Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
J Ethnopharmacol ; 301: 115833, 2023 Jan 30.
Article in English | MEDLINE | ID: covidwho-2076372

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Acute lung injury (ALI) is a common manifestation of COVID-19. Xuanfei Baidu Formula(XFBD) is used in China to treat mild or common damp-toxin obstructive pulmonary syndrome in COVID-19 patients. However, the active ingredients of XFBD have not been extensively studied, and its mechanism of action in the treatment of ALI is not well understood. AIM OF THE STUDY: The purpose of this study was to investigate the mechanism of action of XFBD in treating ALI in rats, by evaluating its active components. MATERIALS AND METHODS: Firstly, the chemical composition of XFBD was identified using ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry. The potential targets of XFBD for ALI treatment were predicted using network pharmacological analysis. Finally, the molecular mechanism of XFBD was validated using a RAW264.7 cell inflammation model and a mouse ALI model. RESULTS: A total of 113 compounds were identified in XFBD. Network pharmacology revealed 34 hub targets between the 113 compounds and ALI. The results of Kyoto Encyclopedia of Genes and Genomes and gene ontology analyses indicated that the NF-κB signaling pathway was the main pathway for XFBD in the treatment of ALI. We found that XFBD reduced proinflammatory factor levels in LPS-induced cellular models. By examining the lung wet/dry weight ratio and pathological sections in vivo, XFBD was found that XFBD could alleviate ALI. Immunohistochemistry results showed that XFBD inhibited ALI-induced increases in p-IKK, p-NF-κB p65, and iNOS proteins. In vitro experiments demonstrated that XFBD inhibited LPS-induced activation of the NF-κB pathway. CONCLUSION: This study identified the potential practical components of XFBD, combined with network pharmacology and experimental validation to demonstrate that XFBD can alleviate lung injury caused by ALI by inhibiting the NF-κB signaling pathway.


Subject(s)
Acute Lung Injury , COVID-19 , Mice , Rats , Animals , NF-kappa B/metabolism , Lipopolysaccharides/toxicity , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Signal Transduction , Lung/pathology , Disease Models, Animal
2.
BMC Public Health ; 22(1): 1843, 2022 10 01.
Article in English | MEDLINE | ID: covidwho-2053885

ABSTRACT

BACKGROUND: In response to the COVID-19 outbreak, the Civil Aviation Administration of China (CAAC) has formulated Implementation Measures for Exemption of Crew Duty Periods and Flight Time Restrictions during the COVID-19 Outbreak. This exemption policy imposes temporary deviations from the approved crew duty periods and flight time restrictions for some transport airlines and regulates the use of multiple crews for continuous round-trip flights. However, no research has been conducted on flight crew fatigue under this exemption policy. That is, the exemption policy lacks theoretical analysis and scientific validation. METHODS: Firstly, flight plans for international flights under both the exemption and the CCAR-121 Policy schemes (with three flight departure scenarios: early morning, midday and evening) are designed, and flight plans are simulated based on the SAFE model. The Karolinska Sleepiness Scale (KSS) and the PVT objective test of alertness, both of which are commonly used in the aviation industry, are then selected for use in an empirical experimental study of flight crew fatigue on two flights subject to the exemption and CCAR-121 policies. RESULTS: The SAFE model simulation found that the fatigue risk results based on flight crews for flights departing in the early morning (4:00), at noon (12:00) and in the evening (20:00) indicate that the fatigue risk levels of flight crews operating under the exemption policy are overwhelmingly lower than or similar to those operating under the CCAR-121 policy. However, there were a few periods when the fatigue risk of crews flying under the exemption policy was higher than that of crews flying under the CCAR-121 policy, but at these times, the crews flying under both policies were either at a lower level of fatigue risk or were in the rest phase of their shifts. In the experimental study section, 40 pilots from each of the early morning (4:00), noon (12:00) and evening (20:00) departures operating under the exemption policy were selected to collect KSS scale data and PVT test data during their duty periods, and a total of 120 other pilots operating under the CCAR-121 policy were selected for the same experiment. First, the KSS scale data results found that flight pilots, whether flying under the exemption policy or under the CCAR-121 policy, had overall similar KSS scores, maintained KSS scores below the fatigue risk threshold (i.e., KSS score < 6) during the flights and that the empirical KSS data and the model simulation results from the KSS data were overall identical at the test nodes during the flight and had nearly identical trends. Finally, the results of the PVT objective test indicators showed that the overall change in 1/RT of the crews flying under the exemption policy was less than or similar to that of the crews flying under the CCAR-121 policy, while the maximum change in 1/RT of the crews under both policies was between 1 and 1.5. This indicates that the overall level of alertness of the crew flying under the exemption policy is higher than or similar to that of the crew flying under the CCAR-121 policy, while the change in alertness level of the crew before and after the mission is relatively small when flying under either policy. CONCLUSION: Based on the model simulation results and the results of the empirical study, it was verified that the overall fatigue risk level of flight crews operating under the exemption policy is lower than or similar to the fatigue risk level of flight crews operating under the CCAR-121 policy. Therefore, the exemption policy in response to the COVID-19 outbreak does not result in an overall increase in the level of flight crew fatigue risk compared to the original CCAR-121 policy.


Subject(s)
COVID-19 , Work Schedule Tolerance , Aircraft , Disease Outbreaks , Fatigue/epidemiology , Humans , Policy , Risk Assessment , Sleep/physiology , Sleep Deprivation/epidemiology , Work Schedule Tolerance/physiology
3.
Front Public Health ; 10: 877668, 2022.
Article in English | MEDLINE | ID: covidwho-1952824

ABSTRACT

Background: With promotion of COVID-19 vaccinations, there has been a corresponding vaccine hesitancy, of which older adolescents and young adults represent groups of particular concern. In this report, we investigated the prevalence and reasons for vaccine hesitancy, as well as potential risk factors, within older adolescents and young adults in China. Methods: To assess these issues, an online survey was administered over the period from March 14 to April 15, 2021. Older adolescents (16-17 years old) and young adults (18-21 years old) were recruited nationwide from Wechat groups and results from a total of 2,414 respondents were analyzed. Socio-demographic variables, vaccine hesitancy, psychological distress, abnormal illness behavior, global well-being and social support were analyzed in this report. Results: Compared to young adults (n = 1,405), older adolescents (n = 1,009) showed higher prevalence rates of COVID-19 vaccine hesitancy (16.5 vs. 7.9%, p < 0.001). History of physical diseases (p = 0.007) and abnormal illness behavior (p = 0.001) were risk factors for vaccine hesitancy among older adolescents, while only a good self-reported health status (p = 0.048) was a risk factor for young adults. Concerns over COVID-19 vaccine side effects (67.1%) and beliefs of invulnerability regarding infection risk (41.9%) were the most prevalent reasons for vaccine hesitancy. Providing evidence on the vaccine reduction of COVID-19 infection risk (67.5%), ensuring vaccine safety (56.7%) and the low risk of side effects (52.7%) were the most effective persuasions for promoting vaccinations. Conclusion: In China, older adolescents showed a higher prevalence for vaccine hesitancy than that of young adults. Abnormal illness behavior and history of physical diseases were risk factors for vaccine hesitancy among these older adolescents, while social support represents an important factor which could help to alleviate this hesitancy.


Subject(s)
COVID-19 , Vaccines , Adolescent , Adult , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , China/epidemiology , Cross-Sectional Studies , Health Knowledge, Attitudes, Practice , Humans , Parents/psychology , Patient Acceptance of Health Care , Vaccination Hesitancy , Young Adult
4.
Genome Med ; 14(1): 46, 2022 05 03.
Article in English | MEDLINE | ID: covidwho-1875023

ABSTRACT

BACKGROUND: Natural killer (NK) cells are innate lymphoid cells that mediate antitumour and antiviral responses. However, very little is known about how ageing influences human NK cells, especially at the single-cell level. METHODS: We applied single-cell sequencing (scRNA-seq) to human lymphocytes and NK cells from 4 young and 4 elderly individuals and then analysed the transcriptome data using Seurat. We detected the proportion and phenotype of NK cell subsets in peripheral blood samples from a total of 62 young and 52 elderly healthy donors by flow cytometry. We also used flow cytometry to examine the effector functions of NK cell subsets upon IFN-α/IL-12+IL-15/K562/IL-2 stimulation in vitro in peripheral blood samples from a total of 64 young and 63 elderly healthy donors. We finally studied and integrated single-cell transcriptomes of NK cells from 15 young and 41 elderly COVID-19 patients with those from 12 young and 6 elderly healthy control individuals to investigate the impacts of ageing on NK cell subsets in COVID-19 disease. RESULTS: We discovered a memory-like NK subpopulation (NK2) exhibiting the largest distribution change between elderly and young individuals among lymphocytes. Notably, we discovered a unique NK subset that was predominantly CD52+ NK2 cells (NK2.1). These memory-like NK2.1 cells accumulated with age, exhibited proinflammatory characteristics, and displayed a type I interferon response state. Integrative analyses of a large-cohort COVID-19 dataset and our datasets revealed that NK2.1 cells from elderly COVID-19 patients are enriched for type I interferon signalling, which is positively correlated with disease severity in COVID-19. CONCLUSIONS: We identified a unique memory-like NK cell subset that accumulates with ageing and correlates with disease severity in COVID-19. Our results identify memory-like NK2.1 cells as a potential target for developing immunotherapies for infectious diseases and for addressing age-related dysfunctions of the immune system.


Subject(s)
COVID-19 , Transcriptome , Aged , Aging/genetics , Humans , Immunity, Innate , Killer Cells, Natural/metabolism , Severity of Illness Index
5.
Front Endocrinol (Lausanne) ; 13: 799521, 2022.
Article in English | MEDLINE | ID: covidwho-1862594

ABSTRACT

Coronavirus disease 2019 or COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a significant threat to the health of human beings. While wearing mask, maintaining social distance and performing self-quarantine can reduce virus spreading passively, vaccination actively enhances immune defense against COVID-19. However, mutations of SARS-CoV-2 and presence of asymptomatic carriers frustrate the effort of completely conquering COVID-19. A strategy that can reduce the susceptibility and thus prevent COVID-19 while blocking viral invasion and pathogenesis independent of viral antigen stability is highly desirable. In the pathogenesis of COVID-19, endocrine disorders have been implicated. Correspondingly, many hormones have been identified to possess therapeutic potential of treating COVID-19, such as estrogen, melatonin, corticosteroids, thyroid hormone and oxytocin. Among them, oxytocin has the potential of both treatment and prevention of COVID-19. This is based on oxytocin promotion of immune-metabolic homeostasis, suppression of inflammation and pre-existing comorbidities, acceleration of damage repair, and reduction of individuals' susceptibility to pathogen infection. Oxytocin may specifically inactivate SARS-COV-2 spike protein and block viral entry into cells via angiotensin-converting enzyme 2 by suppressing serine protease and increasing interferon levels and number of T-lymphocytes. In addition, oxytocin can promote parasympathetic outflow and the secretion of body fluids that could dilute and even inactivate SARS-CoV-2 on the surface of cornea, oral cavity and gastrointestinal tract. What we need to do now is clinical trials. Such trials should fully balance the advantages and disadvantages of oxytocin application, consider the time- and dose-dependency of oxytocin effects, optimize the dosage form and administration approach, combine oxytocin with inhibitors of SARS-CoV-2 replication, apply specific passive immunization, and timely utilize efficient vaccines. Meanwhile, blocking COVID-19 transmission chain and developing other efficient anti-SARS-CoV-2 drugs are also important. In addition, relative to the complex issues with drug applications over a long term, oxytocin can be mobilized through many physiological stimuli, and thus used as a general prevention measure. In this review, we explore the potential of oxytocin for treatment and prevention of COVID-19 and perhaps other similar pathogens.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , COVID-19/prevention & control , Humans , Oxytocin/therapeutic use , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
6.
Sci Transl Med ; 14(661): eabm7621, 2022 09 07.
Article in English | MEDLINE | ID: covidwho-1846322

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus driving the ongoing coronavirus disease 2019 (COVID-19) pandemic, continues to rapidly evolve. Because of the limited efficacy of vaccination in prevention of SARS-CoV-2 transmission and continuous emergence of variants of concern (VOCs), orally bioavailable and broadly efficacious antiviral drugs are urgently needed. Previously, we showed that the parent nucleoside of remdesivir, GS-441524, has potent anti-SARS-CoV-2 activity. Here, we report that esterification of the 5'-hydroxyl moieties of GS-441524 markedly improved antiviral potency. This 5'-hydroxyl-isobutyryl prodrug, ATV006, demonstrated excellent oral bioavailability in rats and cynomolgus monkeys and exhibited potent antiviral efficacy against different SARS-CoV-2 VOCs in vitro and in three mouse models. Oral administration of ATV006 reduced viral loads and alleviated lung damage when administered prophylactically and therapeutically to K18-hACE2 mice challenged with the Delta variant of SARS-CoV-2. These data indicate that ATV006 represents a promising oral antiviral drug candidate for SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Prodrugs , Adenosine/therapeutic use , Adenosine Monophosphate/analogs & derivatives , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Mice , Prodrugs/pharmacology , Prodrugs/therapeutic use , Rats , SARS-CoV-2
7.
RSC Adv ; 10(56): 33944-33954, 2020 Sep 10.
Article in English | MEDLINE | ID: covidwho-1825117

ABSTRACT

The antiviral function of carbon dots (CDots) with visible light exposure was evaluated, for which the model bacteriophages MS2 as a surrogate of small RNA viruses were used. The results show clearly that the visible light-activated CDots are highly effective in diminishing the infectivity of MS2 in both low and high titer samples to the host E. coli cells, and the antiviral effects are dot concentration- and treatment time-dependent. The action of CDots apparently causes no significant damage to the structural integrity and morphology of the MS2 phage or the breakdown of the capsid proteins, but does result in the protein carbonylation (a commonly used indicator for protein oxidation) and the degradation of viral genomic RNA. Mechanistically the results may be understood in the framework of photodynamic effects that are associated with the unique excited state properties and processes of CDots. Opportunities for potentially broad applications of CDots coupled with visible/natural light in the prevention and control of viral transmission and spread are highlighted and discussed.

9.
Brief Bioinform ; 22(2): 1442-1450, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1081049

ABSTRACT

Since the first report of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019, the COVID-19 pandemic has spread rapidly worldwide. Due to the limited virus strains, few key mutations that would be very important with the evolutionary trends of virus genome were observed in early studies. Here, we downloaded 1809 sequence data of SARS-CoV-2 strains from GISAID before April 2020 to identify mutations and functional alterations caused by these mutations. Totally, we identified 1017 nonsynonymous and 512 synonymous mutations with alignment to reference genome NC_045512, none of which were observed in the receptor-binding domain (RBD) of the spike protein. On average, each of the strains could have about 1.75 new mutations each month. The current mutations may have few impacts on antibodies. Although it shows the purifying selection in whole-genome, ORF3a, ORF8 and ORF10 were under positive selection. Only 36 mutations occurred in 1% and more virus strains were further analyzed to reveal linkage disequilibrium (LD) variants and dominant mutations. As a result, we observed five dominant mutations involving three nonsynonymous mutations C28144T, C14408T and A23403G and two synonymous mutations T8782C, and C3037T. These five mutations occurred in almost all strains in April 2020. Besides, we also observed two potential dominant nonsynonymous mutations C1059T and G25563T, which occurred in most of the strains in April 2020. Further functional analysis shows that these mutations decreased protein stability largely, which could lead to a significant reduction of virus virulence. In addition, the A23403G mutation increases the spike-ACE2 interaction and finally leads to the enhancement of its infectivity. All of these proved that the evolution of SARS-CoV-2 is toward the enhancement of infectivity and reduction of virulence.


Subject(s)
Biological Evolution , Mutation , SARS-CoV-2/genetics , COVID-19/virology , Humans , Linkage Disequilibrium , Open Reading Frames , SARS-CoV-2/pathogenicity , Virulence/genetics
10.
J Med Chem ; 65(4): 2785-2793, 2022 02 24.
Article in English | MEDLINE | ID: covidwho-1057678

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) has resulted in a global pandemic due to the rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). At the time of this manuscript's publication, remdesivir is the only COVID-19 treatment approved by the United States Food and Drug Administration. However, its effectiveness is still under question due to the results of the large Solidarity Trial conducted by the World Health Organization. Herein, we report that the parent nucleoside of remdesivir, GS-441524, potently inhibits the replication of SARS-CoV-2 in Vero E6 and other cell lines. Challenge studies in both an AAV-hACE2 mouse model of SARS-CoV-2 and in mice infected with murine hepatitis virus, a closely related coronavirus, showed that GS-441524 was highly efficacious in reducing the viral titers in CoV-infected organs without notable toxicity. Our results support that GS-441524 is a promising and inexpensive drug candidate for treating of COVID-19 and other CoV diseases.


Subject(s)
Adenosine/analogs & derivatives , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Disease Models, Animal , Adenosine/chemistry , Adenosine/metabolism , Adenosine/pharmacology , Animals , Antiviral Agents/chemistry , Antiviral Agents/metabolism , COVID-19/metabolism , COVID-19/pathology , Cells, Cultured , Chlorocebus aethiops , Dose-Response Relationship, Drug , Humans , Male , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
11.
J Med Internet Res ; 23(1): e24889, 2021 01 06.
Article in English | MEDLINE | ID: covidwho-1011357

ABSTRACT

BACKGROUND: Social media plays a critical role in health communications, especially during global health emergencies such as the current COVID-19 pandemic. However, there is a lack of a universal analytical framework to extract, quantify, and compare content features in public discourse of emerging health issues on different social media platforms across a broad sociocultural spectrum. OBJECTIVE: We aimed to develop a novel and universal content feature extraction and analytical framework and contrast how content features differ with sociocultural background in discussions of the emerging COVID-19 global health crisis on major social media platforms. METHODS: We sampled the 1000 most shared viral Twitter and Sina Weibo posts regarding COVID-19, developed a comprehensive coding scheme to identify 77 potential features across six major categories (eg, clinical and epidemiological, countermeasures, politics and policy, responses), quantified feature values (0 or 1, indicating whether or not the content feature is mentioned in the post) in each viral post across social media platforms, and performed subsequent comparative analyses. Machine learning dimension reduction and clustering analysis were then applied to harness the power of social media data and provide more unbiased characterization of web-based health communications. RESULTS: There were substantially different distributions, prevalence, and associations of content features in public discourse about the COVID-19 pandemic on the two social media platforms. Weibo users were more likely to focus on the disease itself and health aspects, while Twitter users engaged more about policy, politics, and other societal issues. CONCLUSIONS: We extracted a rich set of content features from social media data to accurately characterize public discourse related to COVID-19 in different sociocultural backgrounds. In addition, this universal framework can be adopted to analyze social media discussions of other emerging health issues beyond the COVID-19 pandemic.


Subject(s)
COVID-19 , Health Communication , Health Policy , Machine Learning , Politics , Social Media/statistics & numerical data , Workflow , COVID-19/epidemiology , COVID-19/virology , Cluster Analysis , Humans , Pandemics , SARS-CoV-2
12.
Psychother Psychosom ; 90(2): 127-136, 2021.
Article in English | MEDLINE | ID: covidwho-913881

ABSTRACT

BACKGROUND: As the fight against the COVID-19 epidemic continues, medical workers may have allostatic load. OBJECTIVE: During the reopening of society, medical and nonmedical workers were compared in terms of allostatic load. METHODS: An online study was performed; 3,590 Chinese subjects were analyzed. Socio-demographic variables, allostatic load, stress, abnormal illness behavior, global well-being, mental status, and social support were assessed. RESULTS: There was no difference in allostatic load in medical workers compared to nonmedical workers (15.8 vs. 17.8%; p = 0.22). Multivariate conditional logistic regression revealed that anxiety (OR = 1.24; 95% CI 1.18-1.31; p < 0.01), depression (OR = 1.23; 95% CI 1.17-1.29; p < 0.01), somatization (OR = 1.20; 95% CI 1.14-1.25; p < 0.01), hostility (OR = 1.24; 95% CI 1.18-1.30; p < 0.01), and abnormal illness behavior (OR = 1.49; 95% CI 1.34-1.66; p < 0.01) were positively associated with allostatic load, while objective support (OR = 0.84; 95% CI 0.78-0.89; p < 0.01), subjective support (OR = 0.84; 95% CI 0.80-0.88; p < 0.01), utilization of support (OR = 0.80; 95% CI 0.72-0.88; p < 0.01), social support (OR = 0.90; 95% CI 0.87-0.93; p < 0.01), and global well-being (OR = 0.30; 95% CI 0.22-0.41; p < 0.01) were negatively associated. CONCLUSIONS: In the post-COVID-19 epidemic time, medical and nonmedical workers had similar allostatic load. Psychological distress and abnormal illness behavior were risk factors for it, while social support could relieve it.


Subject(s)
Allostasis/physiology , Anxiety/physiopathology , COVID-19 , Depression/physiopathology , Health Personnel , Illness Behavior/physiology , Personal Satisfaction , Social Support , Stress, Psychological/physiopathology , Adult , China , Female , Humans , Male , Middle Aged , Occupations
13.
bioRxiv ; 2020 Sep 04.
Article in English | MEDLINE | ID: covidwho-852088

ABSTRACT

A severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2) has recently caused a pandemic COVID-19 disease that infected more than 25.6 million and killed 852,000 people worldwide. Like the SARS-CoV, SARS-CoV-2 also employs a receptor-binding motif (RBM) of its envelope spike protein for binding the host angiotensin-converting enzyme 2 (ACE2) to gain viral entry. Currently, extensive efforts are being made to produce vaccines against a surface fragment of a SARS-CoV-2, such as the spike protein, in order to boost protective antibody responses. It was previously unknown how spike protein-targeting antibodies would affect innate inflammatory responses to SARS-CoV-2 infections. Here we generated a highly purified recombinant protein corresponding to the RBM of SARS-CoV-2, and used it to screen for cross-reactive monoclonal antibodies (mAbs). We found two RBM-binding mAbs that competitively inhibited its interaction with human ACE2, and specifically blocked the RBM-induced GM-CSF secretion in both human monocyte and murine macrophage cultures. Our findings have suggested a possible strategy to prevent SARS-CoV-2-elicited "cytokine storm", and provided a potentially useful criteria for future assessment of innate immune-modulating properties of various SARS-CoV-2 vaccines. ONE SENTENCE SUMMARY: RBM-binding Antibodies Inhibit GM-CSF Induction.

14.
Med Sci Monit ; 26: e926602, 2020 Sep 23.
Article in English | MEDLINE | ID: covidwho-789901

ABSTRACT

BACKGROUND This study aimed to use online questionnaires to evaluate the factors associated with anxiety and depression in Chinese visiting scholars in the United States during the COVID-19 pandemic. MATERIAL AND METHODS Using a cross-sectional design, 311 Chinese scholars visiting 41 states in the United States were interviewed on 20 and 21 April 2020 through WeChat using the Patient Health Questionnaire-9 (PHQ-9) and the Generalized Anxiety Disorder-7 (GAD-7) questionnaire. RESULTS Of these 311 visiting scholars, 69 (22.2%) reported no symptoms of anxiety or depression, whereas 63 (20.3%) reported severe anxiety and 67 (21.5%) reported severe depression. Risk of anxiety was 93% higher in visiting scholars with than without accompanying parents in the US (odds ratio [OR], 1.93; 95% confidence interval [CI], 1.01-3.68) and was 1.72-fold (95% CI, 1.04-2.84) higher in those experiencing stress about family members with COVID-19. Stresses about personal security and return to China on schedule were associated with 1.73-fold (95% CI, 1.03-2.92) and 3.00-fold (95% CI, 1.51-5.95) higher risks of anxiety, respectively. Risks of depression were 1.86-fold (95% CI, 1.14-3.05), 1.84-fold (95% CI, 1.10-3.07), and 3.45-fold (95% CI, 1.72-6.92) higher in visiting Chinese scholars who were than were not experiencing stresses about financial support, personal security and return to China on schedule, respectively. CONCLUSIONS Chinese scholars visiting the United States during the COVID-19 pandemic experienced severe psychological distress. Surveys that include larger numbers of visiting scholars are warranted.


Subject(s)
Anxiety/etiology , Betacoronavirus , Coronavirus Infections/psychology , Depression/etiology , International Educational Exchange , Pandemics , Pneumonia, Viral/psychology , Stress, Psychological/etiology , Adult , Anxiety/ethnology , COVID-19 , China/ethnology , Cross-Sectional Studies , Depression/ethnology , Female , Humans , Male , Marriage , Parents , Psychological Tests , Risk , SARS-CoV-2 , Stress, Psychological/ethnology , Surveys and Questionnaires , United States , Young Adult
15.
Intern Emerg Med ; 15(8): 1545-1552, 2020 11.
Article in English | MEDLINE | ID: covidwho-778052

ABSTRACT

In a Coronavirus disease 2019 (COVID-19) epidemic, management of the emergency department is a difficult task in terms of prevention and control of the disease in general hospitals. On top of meeting urgent needs of patients for medical treatment, the emergency department also has to devote resources into investigation and prevention of COVID-19. At the beginning of the epidemic, with the strategy to intercept the chain of infection, Peking University First Hospital (PKUFH) focused on three important aspects: controlling the source of infection, cutting off the route of transmission, and protecting vulnerable populations, to expeditiously draft scientific and proper management measures for the emergency department, followed by real-time dynamic adjustments based on the development trend of the epidemic. These measures effectively ensured a smooth, orderly and safe operation of the emergency department. As of the writing of this manuscript, there has been no active COVID-19 infection in patients and medical staff in the emergency department, and no infection in patients admitted to PKUFH through the emergency department. This study describes the prevention and control measures in the emergency department of PKUFH during the outbreak of COVID-19, aiming to provide some reference for domestic and international medical institutions.


Subject(s)
Disease Management , Disease Transmission, Infectious/prevention & control , Emergency Service, Hospital/statistics & numerical data , Absenteeism , Disease Transmission, Infectious/statistics & numerical data , Education, Continuing/methods , Emergency Service, Hospital/organization & administration , Hospitals, General/organization & administration , Hospitals, General/statistics & numerical data , Humans , Infection Control/methods , Infection Control/standards , Infection Control/trends , Pandemics/prevention & control , Pandemics/statistics & numerical data , Personnel Staffing and Scheduling/trends , Surveys and Questionnaires
17.
Epidemiology Bulletin ; 36(15):87-88, 2020.
Article in English | Airiti Library | ID: covidwho-708672

ABSTRACT

Since December 21, 2019, on-board inspection had been implemented on direct flights from Wuhan, China, marking the beginning of boarder quarantine challenges in respond to COVID-19 pandemic. In line with the development of the international epidemic, the Central Epidemic Command Center gradually expanded entry restrictions and post-entry quarantine requirements. Since March 19, 2020, all foreign nationals had been prohibited from entering Taiwan. Passengers eligible for entry were required to undergo home quarantine for 14 days. Upon arrival, passengers were required to declare their symptoms and travel history, and to receive fever screening and health assessment. Throat swab specimens were collected from those who presented symptoms at the airport or in the hospital, and then these passengers stayed in a centralized quarantine facility to wait for testing results. In addition, aiming at reducing risks originated from crowds and frequent movement, only aircrafts from five airports in China were allowed to enter Taiwan. Also, all connecting flights were suspended, and cruises and cross-strait passenger liners were banned from calling at ports of Taiwan. For front-line officers at ports of entry, health monitoring and protection guidelines were developed to protect their safety. In order to ensure safety and security of air and sea transport, the competent authorities in charge of transportation have established an epidemic prevention and management mechanism for air and sea transport respectively. Over 184,000 home quarantine notices had been issued by border quarantine authorities. More than 80% of the inbound travelers completed the declaration via Entry Quarantine System, greatly improving timeliness and accuracy of information required for further epidemic prevention and control in community. With on-board quarantine and health surveillance system for entry, not only the first confirmed case in Taiwan, but also more than one-third of imported cases were detected through border quarantine, sparing more capacity for domestic response and preparedness for medical resources and medical systems and therefore alleviating pressure on epidemic prevention and control in the community. Despite continuous and serious epidemic and significant challenges ahead, Taiwan keeps on implementing various quarantine measures in accordance with the principle of "strict risk control at border " to comprehensively protect border security.

18.
Eur J Nucl Med Mol Imaging ; 47(11): 2525-2532, 2020 10.
Article in English | MEDLINE | ID: covidwho-647136

ABSTRACT

BACKGROUND: The novel coronavirus disease 2019 (COVID-19) is an emerging worldwide threat to public health. While chest computed tomography (CT) plays an indispensable role in its diagnosis, the quantification and localization of lesions cannot be accurately assessed manually. We employed deep learning-based software to aid in detection, localization and quantification of COVID-19 pneumonia. METHODS: A total of 2460 RT-PCR tested SARS-CoV-2-positive patients (1250 men and 1210 women; mean age, 57.7 ± 14.0 years (age range, 11-93 years) were retrospectively identified from Huoshenshan Hospital in Wuhan from February 11 to March 16, 2020. Basic clinical characteristics were reviewed. The uAI Intelligent Assistant Analysis System was used to assess the CT scans. RESULTS: CT scans of 2215 patients (90%) showed multiple lesions of which 36 (1%) and 50 patients (2%) had left and right lung infections, respectively (> 50% of each affected lung's volume), while 27 (1%) had total lung infection (> 50% of the total volume of both lungs). Overall, 298 (12%), 778 (32%) and 1300 (53%) patients exhibited pure ground glass opacities (GGOs), GGOs with sub-solid lesions and GGOs with both sub-solid and solid lesions, respectively. Moreover, 2305 (94%) and 71 (3%) patients presented primarily with GGOs and sub-solid lesions, respectively. Elderly patients (≥ 60 years) were more likely to exhibit sub-solid lesions. The generalized linear mixed model showed that the dorsal segment of the right lower lobe was the favoured site of COVID-19 pneumonia. CONCLUSION: Chest CT combined with analysis by the uAI Intelligent Assistant Analysis System can accurately evaluate pneumonia in COVID-19 patients.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnostic imaging , Deep Learning , Lung/diagnostic imaging , Multidetector Computed Tomography/methods , Pandemics , Pneumonia, Viral/diagnostic imaging , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Child , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Female , Humans , Linear Models , Male , Middle Aged , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Software , Young Adult
19.
Emerg Microbes Infect ; 9(1): 1546-1553, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-627739

ABSTRACT

This study aimed to estimate the attack rates, and identify the risk factors of COVID-19 infection. Based on a retrospective cohort study, we investigated 11,580 contacts of COVID-19 cases in Guangdong Province from 10 January to 15 March 2020. All contacts were tested by RT-PCR to detect their infection of SARS-COV-2. Attack rates by characteristics were calculated. Logistic regression was used to estimate the risk factors of infection for COVID-19. A total of 515 of 11,580 contacts were identified to be infected with SARS-COV-2. Compared to young adults aged 20-29 years, the infected risk was higher in children (RR: 2.59, 95%CI: 1.79-3.76), and old people aged 60-69 years (RR: 5.29, 95%CI: 3.76-7.46). Females also had higher infected risk (RR: 1.66, 95%CI: 1.39-2.00). People having close relationship with index cases encountered higher infected risk (RR for spouse: 20.68, 95%CI: 14.28-29.95; RR for non-spouse family members: 9.55, 95%CI: 6.73-13.55; RR for close relatives: 5.90, 95%CI: 4.06-8.59). Moreover, contacts exposed to index case in symptomatic period (RR: 2.15, 95%CI: 1.67-2.79), with critically severe symptoms (RR: 1.61, 95%CI: 1.00-2.57), with symptoms of dizzy (RR: 1.58, 95%CI: 1.08-2.30), myalgia (RR: 1.49, 95%CI: 1.15-1.94), and chill (RR: 1.42, 95%CI: 1.05-1.92) had higher infected risks. Children, old people, females, and family members are susceptible of COVID-19 infection, while index cases in the incubation period had lower contagiousness. Our findings will be helpful for developing targeted prevention and control strategies to combat the worldwide pandemic.


Subject(s)
Contact Tracing , Coronavirus Infections/transmission , Pneumonia, Viral/transmission , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19 , Child , Child, Preschool , China , Cohort Studies , Disease Susceptibility , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Pandemics , Quarantine , Retrospective Studies , Risk Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL