Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
mBio ; : e0328522, 2023 Feb 14.
Article in English | MEDLINE | ID: covidwho-2246542

ABSTRACT

In the last 2 decades, pathogens originating in animals may have triggered three coronavirus pandemics, including the coronavirus disease 2019 pandemic. Thus, evaluation of the spillover risk of animal severe acute respiratory syndrome (SARS)-related coronavirus (SARSr-CoV) is important in the context of future disease preparedness. However, there is no analytical framework to assess the spillover risk of SARSr-CoVs, which cannot be determined by sequence analysis alone. Here, we established an integrity framework to evaluate the spillover risk of an animal SARSr-CoV by testing how viruses break through key human immune barriers, including viral cell tropism, replication dynamics, interferon signaling, inflammation, and adaptive immune barriers, using human ex vivo lung tissues, human airway and nasal organoids, and human lung cells. Using this framework, we showed that the two pre-emergent animal SARSr-CoVs, bat BtCoV-WIV1 and pangolin PCoV-GX, shared similar cell tropism but exhibited less replicative fitness in the human nasal cavity or airway than did SARS-CoV-2. Furthermore, these viruses triggered fewer proinflammatory responses and less cell death, yet showed interferon antagonist activity and the ability to partially escape adaptive immune barriers to SARS-CoV-2. Collectively, these animal viruses did not fully adapt to spread or cause severe diseases, thus causing successful zoonoses in humans. We believe that this experimental framework provides a path to identifying animal coronaviruses with the potential to cause future zoonoses. IMPORTANCE Evaluation of the zoonotic risk of animal SARSr-CoVs is important for future disease preparedness. However, there are misconceptions regarding the risk of animal viruses. For example, an animal SARSr-CoV could readily infect humans. Alternately, human receptor usage may result in spillover risk. Here, we established an analytical framework to assess the zoonotic risk of SARSr-CoV by testing a series of virus-host interaction profiles. Our data showed that the pre-emergent bat BtCoV-WIV1 and pangolin PCoV-GX were less adapted to humans than SARS-CoV-2 was, suggesting that it may be extremely rare for animal SARSr-CoVs to break all bottlenecks and cause successful zoonoses.

2.
Frontiers in pharmacology ; 14, 2023.
Article in English | EuropePMC | ID: covidwho-2232499

ABSTRACT

Background: The potential effectiveness of traditional Chinese medicine (TCM) against "epidemic diseases” has highlighted the knowledge gaps associated with TCM in COVID-19 management. This study aimed to map the matrix for rigorously assessing, organizing, and presenting evidence relevant to TCM in COVID-19 management. Methods: In this study, we used the methodology of evidence mapping (EM). Nine electronic databases, the WHO International Clinical Trials Registry Platform (ICTRP) Search Portal, ClinicalTrials.gov, gray literature, reference lists of articles, and relevant Chinese conference proceedings, were searched for articles published until 23 March 2022. The EndNote X9, Rayyan, EPPI, and R software were used for data entry and management. Results: In all, 126 studies, including 76 randomized controlled trials (RCTs) and 50 systematic reviews (SRs), met our inclusion criteria. Of these, only nine studies (7.14%) were designated as high quality: four RCTs were assessed as "low risk of bias” and five SRs as "high quality.” Based on the research objectives of these studies, the included studies were classified into treatment (53 RCTs and 50 SRs, 81.75%), rehabilitation (20 RCTs, 15.87%), and prevention (3 RCTs, 2.38%) groups. A total of 76 RCTs included 59 intervention categories and 57 efficacy outcomes. All relevant trials consistently demonstrated that TCM significantly improved 22 outcomes (i.e., consistent positive outcomes) without significantly affecting four (i.e., consistent negative outcomes). Further, 50 SRs included nine intervention categories and 27 efficacy outcomes, two of which reported consistent positive outcomes and two reported consistent negative outcomes. Moreover, 45 RCTs and 38 SRs investigated adverse events;39 RCTs and 30 SRs showed no serious adverse events or significant differences between groups. Conclusion: This study provides evidence matrix mapping of TCM against COVID-19, demonstrating the potential efficacy and safety of TCM in the treatment and prevention of COVID-19 and rehabilitation of COVID-19 patients, and also addresses evidence gaps. Given the limited number and poor quality of available studies and potential concerns regarding the applicability of the current clinical evaluation standards to TCM, the effect of specific interventions on individual outcomes needs further evaluation.

3.
Front Med ; 2023 Feb 04.
Article in English | MEDLINE | ID: covidwho-2236795

ABSTRACT

Emerging SARS-CoV-2 variants have made COVID-19 convalescents susceptible to re-infection and have raised concern about the efficacy of inactivated vaccination in neutralization against emerging variants and antigen-specific B cell response. To this end, a study on a long-term cohort of 208 participants who have recovered from COVID-19 was conducted, and the participants were followed up at 3.3 (Visit 1), 9.2 (Visit 2), and 18.5 (Visit 3) months after SARS-CoV-2 infection. They were classified into three groups (no-vaccination (n = 54), one-dose (n = 62), and two-dose (n = 92) groups) on the basis of the administration of inactivated vaccination. The neutralizing antibody (NAb) titers against the wild-type virus continued to decrease in the no-vaccination group, but they rose significantly in the one-dose and two-dose groups, with the highest NAb titers being observed in the two-dose group at Visit 3. The NAb titers against the Delta variant for the no-vaccination, one-dose, and two-dose groups decreased by 3.3, 1.9, and 2.3 folds relative to the wild-type virus, respectively, and those against the Omicron variant decreased by 7.0, 4.0, and 3.8 folds, respectively. Similarly, the responses of SARS-CoV-2 RBD-specific B cells and memory B cells were boosted by the second vaccine dose. Results showed that the convalescents benefited from the administration of the inactivated vaccine (one or two doses), which enhanced neutralization against highly mutated SARS-CoV-2 variants and memory B cell responses. Two doses of inactivated vaccine among COVID-19 convalescents are therefore recommended for the prevention of the COVID-19 pandemic, and vaccination guidelines and policies need to be updated.

4.
J Affect Disord ; 327: 397-403, 2023 Apr 14.
Article in English | MEDLINE | ID: covidwho-2235617

ABSTRACT

OBJECTIVE: This study aimed to assess the association between depression and family support among Chinese children and adolescents and to investigate whether loneliness could mediate this relationship. METHODS: There were 2755 children and adolescents aged 18 and below from the China Family Panel Studies (CFPS) that participated in our study. Depression in children and adolescents was assessed by the Center for Epidemiologic Studies Depression Scale (CESD). Binary logistic regression combined with mediation analysis was used to examine the association between family support and depression and the mediating effect of loneliness on this relationship. RESULTS: Of the 2755 children and adolescents, 848 (30.8 %) reported feeling lonely and 310 (11.3 %) reported feeling depressed. Multivariate logistic regression analysis showed that compared with children and adolescents with family support, children and adolescents without family support had a higher risk of loneliness (odds ratio (OR) = 1.668, 95 % confidence interval (CI): 1.318-2.111) and depression (odds ratio (OR) = 2.252, 95 % confidence interval (CI) 1.669-3.039). Mediation analysis revealed that loneliness played a partial mediating role in the association between family support and depression (ß = -0.109, P < 0.001), and the mediation proportion was 38.11 %. CONCLUSION: Family support affects depression directly and indirectly through loneliness. The results suggest that parents should provide more support to children and adolescents to reduce the risk of loneliness and underlying depression during the COVID-19 pandemic.


Subject(s)
COVID-19 , Loneliness , Humans , Adolescent , Child , Depression , Family Support , Mediation Analysis , Pandemics , China
5.
Microorganisms ; 11(2)2023 Feb 08.
Article in English | MEDLINE | ID: covidwho-2230868

ABSTRACT

The frequent emergence of SARS-CoV-2 variants thwarts the prophylactic and therapeutic countermeasures confronting COVID-19. Among them, the Delta variant attracts widespread attention due to its high pathogenicity and fatality rate compared with other variants. However, with the emergence of new variants, studies on Delta variants have been gradually weakened and ignored. In this study, a replication-competent recombinant virus carrying the S protein of the SARS-CoV-2 Delta variant was established based on the vesicular stomatitis virus (VSV), which presented a safe alternative model for studying the Delta variant. The recombinant virus showed a replication advantage in Vero E6 cells, and the viral titers reach 107.3 TCID50/mL at 36 h post-inoculation. In the VSV-vectored recombinant platform, the spike proteins of the Delta variant mediated higher fusion activity and syncytium formation than the wild-type strain. Notably, the recombinant virus was avirulent in BALB/c mice, Syrian hamsters, 3-day ICR suckling mice, and IFNAR/GR-/- mice. It induced protective neutralizing antibodies in rodents, and protected the Syrian hamsters against the SARS-CoV-2 Delta variant infection. Meanwhile, the eGFP reporter of recombinant virus enabled the visual assay of neutralizing antibodies. Therefore, the recombinant virus could be a safe and convenient surrogate tool for authentic SARS-CoV-2. This efficient and reliable model has significant potential for research on viral-host interactions, epidemiological investigation of serum-neutralizing antibodies, and vaccine development.

6.
Can J Diabetes ; 2022 Aug 11.
Article in English | MEDLINE | ID: covidwho-2236024

ABSTRACT

OBJECTIVES: For women with pre-existing and gestational diabetes, pregnancy involves specialized and intensive medical care to optimize maternal and infant outcomes. Medical management for patients with diabetes in pregnancy typically occurs via frequent face-to-face outpatient appointments. COVID-19-induced barriers to face-to-face care have identified the need for high-quality, patient-centred virtual health-care modalities, such as mobile health (mHealth) technologies. Our aim in this review was to identify the patient-reported benefits and limitations of mHealth technologies among women with diabetes in pregnancy. We also aimed to determine how the women's experiences aligned with the best practice standards for patient-centred communication. METHODS: The framework presented by Arksey and O'Malley for conducting scoping reviews, with refinements by Levac et al, was used to guide this review. Relevant studies were identified through comprehensive database searches of MEDLINE, Embase, Emcare and PsycINFO. Thomas and Harden's methods for the thematic synthesis of qualitative research in systematic reviews guided the synthesis of patient-reported benefits and limitations of mHealth technology. RESULTS: Overall, 19 studies describing the use of 16 unique mobile health technologies among 742 women were included in the final review. Patient-reported benefits of mobile health included convenience, support of psychosocial well-being and facilitation of diabetes self-management. Patient-reported limitations included lack of important technological features, perceived burdensome aspects of mHealth and lack of trust in virtual health care. CONCLUSIONS: Women with diabetes report some benefits from mHealth use during pregnancy. Codesigning future technologies with end-users may help address the perceived limitations and effectiveness of mHealth technologies.

7.
Nat Commun ; 14(1): 138, 2023 01 10.
Article in English | MEDLINE | ID: covidwho-2185830

ABSTRACT

ß-Nucleosides and their analogs are dominant clinically-used antiviral and antitumor drugs. α-Nucleosides, the anomers of ß-nucleosides, exist in nature and have significant potential as drugs or drug carriers. Currently, the most widely used methods for synthesizing ß- and α-nucleosides are via N-glycosylation and pentose aminooxazoline, respectively. However, the stereoselectivities of both methods highly depend on the assisting group at the C2' position. Herein, we report an additive-controlled stereodivergent iodocyclization method for the selective synthesis of α- or ß-nucleosides. The stereoselectivity at the anomeric carbon is controlled by the additive (NaI for ß-nucleosides; PPh3S for α-nucleosides). A series of ß- and α-nucleosides are prepared in high yields (up to 95%) and stereoselectivities (ß:α up to 66:1, α:ß up to 70:1). Notably, the introduced iodine at the C2' position of the nucleoside is readily functionalized, leading to multiple structurally diverse nucleoside analogs, including stavudine, an FDA-approved anti-HIV agent, and molnupiravir, an FDA-approved anti-SARS-CoV-2 agent.


Subject(s)
Anti-HIV Agents , COVID-19 , Humans , Nucleosides , Stereoisomerism , Antiviral Agents/pharmacology
8.
J Med Virol ; 95(1): e28380, 2023 01.
Article in English | MEDLINE | ID: covidwho-2148396

ABSTRACT

Children are the high-risk group for COVID-19, and in need of vaccination. However, humoral and cellular immune responses of COVID-19 vaccine remain unclear in vaccinated children. To establish the rational immunization strategy of inactivated COVID-19 vaccine for children, the immunogenicity of either one dose or two doses of the vaccine in children was evaluated. A prospective cohort study of 322 children receiving inactivated COVID-19 vaccine was established in China. The baseline was conducted after 28 days of the first dose, and the follow-up was conducted after 28 days of the second dose. The median titers of receptor binding domain (RBD)-IgG, and neutralizing antibody (NAb) against prototype strain and Omicron variant after the second dose increased significantly compared to those after the first dose (first dose: 70.0, [interquartile range, 30.0-151.0] vs. second dose: 1261.0 [636.0-2060.0] for RBD-IgG; 2.5 [2.5-18.6] vs. 252.0 [138.6-462.1] for NAb against prototype strain; 2.5 [2.5-2.5] vs. 15.0 [7.8-26.5] for NAb against Omicron variant, all p < 0.05). The flow cytometry results showed that the first dose elicited SARS-CoV-2 specific cellular immunity, while the second dose strengthened SARS-CoV-2 specific IL-2+ or TNF-α+  monofunctional, IFN-γ+ TNF-α+  bifunctional, and IFN-γ- IL-2+ TNF-α+ multifunctional CD4+ T cell responses (p < 0.05). Moreover, SARS-CoV-2 specific memory T cells were generated after the first vaccination, including the central memory T cells and effector memory T cells. The present findings provide scientific evidence for the vaccination strategy of the inactive vaccines among children against COVID-19 pandemic.


Subject(s)
COVID-19 Vaccines , COVID-19 , Child , Humans , East Asian People , Interleukin-2 , Pandemics , Prospective Studies , Tumor Necrosis Factor-alpha , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Immunity, Cellular , Antibodies, Neutralizing , Immunoglobulin G , Antibodies, Viral , Immunity, Humoral
9.
Eur J Pediatr ; 181(12): 4019-4037, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2027501

ABSTRACT

Children are the future of the world, but their health and future are facing great uncertainty because of the coronavirus disease 2019 (COVID-19) pandemic. In order to improve the management of children with COVID-19, an international, multidisciplinary panel of experts developed a rapid advice guideline at the beginning of the outbreak of COVID-19 in 2020. After publishing the first version of the rapid advice guideline, the panel has updated the guideline by including additional stakeholders in the panel and a comprehensive search of the latest evidence. All recommendations were supported by systematic reviews and graded using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. Expert judgment was used to develop good practice statements supplementary to the graded evidence-based recommendations. The updated guideline comprises nine recommendations and one good practice statement. It focuses on the key recommendations pertinent to the following issues: identification of prognostic factors for death or pediatric intensive care unit admission; the use of remdesivir, systemic glucocorticoids and antipyretics, intravenous immunoglobulin (IVIG) for multisystem inflammatory syndrome in children, and high-flow oxygen by nasal cannula or non-invasive ventilation for acute hypoxemic respiratory failure; breastfeeding; vaccination; and the management of pediatric mental health. CONCLUSION: This updated evidence-based guideline intends to provide clinicians, pediatricians, patients and other stakeholders with evidence-based recommendations for the prevention and management of COVID-19 in children and adolescents. Larger studies with longer follow-up to determine the effectiveness and safety of systemic glucocorticoids, IVIG, noninvasive ventilation, and the vaccines for COVID-19 in children and adolescents are encouraged. WHAT IS KNOWN: • Several clinical practice guidelines for children with COVID-19 have been developed, but only few of them have been recently updated. • We developed an evidence-based guideline at the beginning of the COVID-19 outbreak and have now updated it based on the results of a comprehensive search of the latest evidence. WHAT IS NEW: • The updated guideline provides key recommendations pertinent to the following issues: identification of prognostic factors for death or pediatric intensive care unit admission; the use of remdesivir, systemic glucocorticoids and antipyretics, intravenous immunoglobulin for multisystem inflammatory syndrome in children, and high-flow oxygen by nasal cannula or non-invasive ventilation for acute hypoxemic respiratory failure; breastfeeding; vaccination; and the management of pediatric mental health.


Subject(s)
Antipyretics , COVID-19 , Respiratory Insufficiency , Adolescent , Child , Humans , COVID-19/prevention & control , COVID-19 Vaccines , Immunoglobulins, Intravenous , Oxygen
10.
J Med Virol ; 94(12): 5858-5866, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2013628

ABSTRACT

To rapidly identify individuals infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and control the spread of coronavirus disease (COVID-19), there is an urgent need for highly sensitive on-site virus detection methods. A clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas)-based molecular diagnostic method was developed for this purpose. Here, a CRISPR system-mediated lateral flow assay (LFA) for SARS-CoV-2 was established based on multienzyme isothermal rapid amplification, CRISPR-Cas13a nuclease, and LFA. To improve the limit of detection (LoD), the crispr RNA, amplification primer, and probe were screened, in addition to concentrations of various components in the reaction system. The LoD of CRISPR detection was improved to 0.25 copy/µl in both fluorescence- and immunochromatography-based assays. To enhance the quality control of the CRISPR-based LFA method, glyceraldehyde-3-phosphate dehydrogenase was detected as a reference using a triple-line strip design in a lateral flow strip. In total, 52 COVID-19-positive and 101 COVID-19-negative clinical samples examined by reverse transcription polymerase chain reaction (RT-PCR) were tested using the CRISPR immunochromatographic detection technique. Results revealed 100% consistency, indicating the comparable effectiveness of our method to that of RT-PCR. In conclusion, this approach significantly improves the sensitivity and reliability of CRISPR-mediated LFA and provides a crucial tool for on-site detection of SARS-CoV-2.


Subject(s)
COVID-19 , CRISPR-Associated Proteins , COVID-19/diagnosis , CRISPR-Associated Proteins/genetics , Humans , Nucleic Acid Amplification Techniques/methods , RNA , Reproducibility of Results , SARS-CoV-2/genetics , Sensitivity and Specificity
11.
BMC Health Serv Res ; 22(1): 1080, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-2002174

ABSTRACT

BACKGROUND: Large-scale detection has great potential to bring benefits for containing the COVID-19 epidemic and supporting the government in reopening economic activities. Evaluating the true regional mobile severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus nucleic acid testing capacity is essential to improve the overall fighting performance against this epidemic and maintain economic development. However, such a tool is not available in this issue. We aimed to establish an evaluation index system for assessing the regional mobile SARS-CoV-2 virus nucleic acid testing capacity and provide suggestions for improving the capacity level. METHODS: The initial version of the evaluation index system was identified based on massive literature and expert interviews. The Delphi method questionnaire was designed and 30 experts were consulted in two rounds of questionnaire to select and revise indexes at all three levels. The Analytic Hierarchy Process method was used to calculate the weight of indexes at all three levels. RESULTS: The evaluation index system for assessing the regional mobile SARS-CoV-2 virus nucleic acid testing capacity, including 5 first-level indexes, 17 second-level indexes, and 90 third-level indexes. The response rates of questionnaires delivered in the two rounds of consultation were 100 and 96.7%. Furthermore, the authority coefficient of 30 experts was 0.71. Kendall's coordination coefficient differences were statistically significant (P < 0.001). The weighted values of capacity indexes were established at all levels according to the consistency test, demonstrating that 'Personnel team construction' (0.2046) came first amongst the five first-level indexes, followed by 'Laboratory performance building and maintenance' (0.2023), 'Emergency response guarantee' (0.1989), 'Information management system for nucleic acid testing resources' (0.1982) and 'Regional mobile nucleic acid testing emergency response system construction' (0.1959). CONCLUSION: The evaluation system for assessing the regional mobile SARS-CoV-2 virus nucleic acid testing capacity puts forward a specific, objective, and quantifiable evaluation criterion. The evaluation system can act as a tool for diversified subjects to find the weak links and loopholes. It also provides a measurable basis for authorities to improve nucleic acid testing capabilities.


Subject(s)
COVID-19 , Nucleic Acids , COVID-19/diagnosis , COVID-19/epidemiology , China/epidemiology , Delphi Technique , Humans , SARS-CoV-2/genetics
12.
J Virol ; 96(17): e0006522, 2022 09 14.
Article in English | MEDLINE | ID: covidwho-2001768

ABSTRACT

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a recently emerging bat-borne coronavirus responsible for high mortality rates in piglets. In vitro studies have indicated that SADS-CoV has a wide tissue tropism in different hosts, including humans. However, whether this virus potentially threatens other animals remains unclear. Here, we report the experimental infection of wild-type BALB/c and C57BL/6J suckling mice with SADS-CoV. We found that mice less than 7 days old are susceptible to the virus, which caused notable multitissue infections and damage. The mortality rate was the highest in 2-day-old mice and decreased in older mice. Moreover, a preliminary neuroinflammatory response was observed in 7-day-old SADS-CoV-infected mice. Thus, our results indicate that SADS-CoV has potential pathogenicity in young hosts. IMPORTANCE SADS-CoV, which likely has originated from bat coronaviruses, is highly pathogenic to piglets and poses a threat to the swine industry. Little is known about its potential to disseminate to other animals. No efficient treatment is available, and the quarantine strategy is the only preventive measure. In this study, we demonstrated that SADS-CoV can efficiently replicate in suckling mice younger than 7 days. In contrast to infected piglets, in which intestinal tropism is shown, SADS-CoV caused infection and damage in all murine tissues evaluated in this study. In addition, neuroinflammatory responses were detected in some of the infected mice. Our work provides a preliminary cost-effective model for the screening of antiviral drugs against SADS-CoV infection.


Subject(s)
Alphacoronavirus , Coronavirus Infections , Diarrhea , Mice , Swine Diseases , Alphacoronavirus/pathogenicity , Animals , Chiroptera/virology , Coronavirus Infections/complications , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Diarrhea/complications , Diarrhea/veterinary , Diarrhea/virology , Humans , Mice/virology , Mice, Inbred BALB C , Mice, Inbred C57BL , Neuroinflammatory Diseases/complications , Neuroinflammatory Diseases/veterinary , Neuroinflammatory Diseases/virology , Swine/virology , Swine Diseases/virology
13.
J Virol ; 96(17): e0077222, 2022 09 14.
Article in English | MEDLINE | ID: covidwho-1992939

ABSTRACT

Bats are reservoirs for diverse coronaviruses, including swine acute diarrhea syndrome coronavirus (SADS-CoV). SADS-CoV was first identified in diarrheal piglets in 2017. As a novel alphacoronavirus, SADS-CoV shares ~95% identity with bat alphacoronavirus HKU2. SADS-CoV has been reported to have broad cell tropism and inherent potential to cross host species barriers for dissemination. Thus far, no effective antiviral drugs or vaccines are available to treat infections with SADS-CoV. Therefore, knowledge of the protein-coding gene set and a subcellular localization map of SADS-CoV proteins are fundamental first steps in this endeavor. Here, all SADS-CoV genes were cloned separately into Flag-tagged plasmids, and the subcellular localizations of viral proteins, with the exception of nsp11, were detected using confocal microscopy techniques. As a result, nsp1, nsp3-N, nsp4, nsp5, nsp7, nsp8, nsp9, nsp10, nsp14, and nsp15 were localized in the cytoplasm and nuclear spaces, and these viral proteins may perform specific functions in the nucleus. All structural and accessory proteins were mainly localized in the cytoplasm. NS7a and membrane protein M colocalized with the Golgi compartment, and they may regulate the assembly of SADS-CoV virions. Maturation of SADS-CoV may occur in the late endosomes, during which envelope protein E is involved in the assembly and release of the virus. In summary, the present study demonstrates for the first time the location of all the viral proteins of SADS-CoV. These fundamental studies of SADS-CoV will promote studies of basic virology of SADS-CoV and support preventive strategies for animals with infection of SADS-CoV. IMPORTANCE SADS-CoV is the first documented spillover of a bat coronavirus that causes severe diseases in domestic animals. Our study is an in-depth annotation of the newly discovered swine coronavirus SADS-CoV genome and viral protein expression. Systematic subcellular localization of SADS-CoV proteins can have dramatic significance in revealing viral protein biological functions in the subcellular locations. Furthermore, our study promote understanding the fundamental science behind the novel swine coronavirus to pave the way for treatments and cures.


Subject(s)
Alphacoronavirus , Coronavirus Infections , Swine Diseases , Viral Proteins , Alphacoronavirus/genetics , Animals , Cell Nucleus/virology , Chiroptera , Coronavirus Infections/veterinary , Endosomes/virology , Golgi Apparatus/virology , Swine , Swine Diseases/virology , Viral Proteins/genetics
14.
Proc Natl Acad Sci U S A ; 119(33): e2203042119, 2022 08 16.
Article in English | MEDLINE | ID: covidwho-1984599

ABSTRACT

A common feature of large-scale extreme events, such as pandemics, wildfires, and major storms is that, despite their differences in etiology and duration, they significantly change routine human movement patterns. Such changes, which can be major or minor in size and duration and which differ across contexts, affect both the consequences of the events and the ability of governments to mount effective responses. Based on naturally tracked, anonymized mobility behavior from over 90 million people in the United States, we document these mobility differences in space and over time in six large-scale crises, including wildfires, major tropical storms, winter freeze and pandemics. We introduce a model that effectively captures the high-dimensional heterogeneity in human mobility changes following large-scale extreme events. Across five different metrics and regardless of spatial resolution, the changes in human mobility behavior exhibit a consistent hyperbolic decline, a pattern we characterize as "spatiotemporal decay." When applied to the case of COVID-19, our model also uncovers significant disparities in mobility changes-individuals from wealthy areas not only reduce their mobility at higher rates at the start of the pandemic but also maintain the change longer. Residents from lower-income regions show a faster and greater hyperbolic decay, which we suggest may help account for different COVID-19 rates. Our model represents a powerful tool to understand and forecast mobility patterns post emergency, and thus to help produce more effective responses.


Subject(s)
COVID-19 , Human Migration , Models, Statistical , Natural Disasters , Pandemics , COVID-19/epidemiology , Forecasting , Human Migration/trends , Humans , Income , Seasons , Spatio-Temporal Analysis , United States
15.
Front Public Health ; 10: 865571, 2022.
Article in English | MEDLINE | ID: covidwho-1952801

ABSTRACT

Background: During the COVID-19 pandemic, vaccine hesitancy (VH) on COVID-19 vaccination still exists in different populations, which has a negative impact on epidemic prevention and control. The objectives were to explore college students' willingness to vaccinate, determine the factors influencing the vaccination behavior of students with COVID-19 vaccine hesitancy, and provide a basis for improving the compliance of college students with COVID-19 vaccination. Methods: The universities in Wuhan are categorized into three levels according to their comprehensive strength and randomly sampled at each level, of which ten universities were selected. A self-designed anonymous electronic questionnaire was distributed online from May 12 to 31, 2021 to investigate the hesitancy, vaccination status, and influencing factors of COVID-19 vaccination among college students in Wuhan. Results: Of the 1,617 participants (1,825 students received the electronic questionnaire) surveyed, 19.0% reported COVID-19 vaccine hesitancy. Among the vaccine-hesitant students, 40.1% were vaccinated against COVID-19. The binary logistic regression analysis shows that families' attitudes "Uncertain" (odds ratio (OR) = 0.258 [0.132-0.503]), vaccination risk psychology (OR = 0.242 [0.079-0.747]) and wait-and-see mentality (OR = 0.171 [0.068-0.468]) are negative factors for the vaccination behavior of hesitant students, while herd mentality (OR = 7.512 [2.718-20.767]) and uncertainty of free policy's impact on vaccine trust (OR = 3.412 [1.547-7.527]) are positive factors. Conclusion: The vaccine hesitancy among college students in Wuhan was relatively high. Family support, herd mentality and free vaccination strategies can help improve vaccination among hesitant students, while vaccination risk psychology and "wait-and-see" psychology reduce the possibility of vaccination. The vaccination strategy of college students should be strengthened from the perspective of social psychological construction.


Subject(s)
COVID-19 , Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , China , Health Knowledge, Attitudes, Practice , Humans , Pandemics , Students , Surveys and Questionnaires , Vaccination
16.
Front Public Health ; 10: 765581, 2022.
Article in English | MEDLINE | ID: covidwho-1952750

ABSTRACT

The COVID-19 outbreak triggered a massive spread of unverified news on social media and has become a source of rumors. This paper studies the impact of a virtual rumor control center (RCC) on Weibo user behavior. The collected COVID-19 breaking news stories were divided into positive, negative, and neutral categories, while the moderating effect model was used to analyze the influence of anti-rumor on user behavior (forwarding, liking, and commenting). Our research found that rumor refuting does not directly affect user behavior but does have an indirect moderating effect. Rumor refuting has a profound impact on user forwarding behavior in cases of positive and negative news. Specifically, when the epidemic becomes more serious, the role of rumor refuting becomes critical, and vice versa. Refuting rumors reduces user willingness to forward positive or negative news, with more impact on negative news. Time lag analysis shows a significant moderation of unverified news within 72 h of refuting rumors but indicated an apparent weakening trend over time. Furthermore, we discovered non-linear feature and counter-cyclical phenomena in the moderating effect of rumor refutation.


Subject(s)
COVID-19 , Social Media , Humans , Social Networking
17.
Front Chem ; 10: 871509, 2022.
Article in English | MEDLINE | ID: covidwho-1952253

ABSTRACT

The pandemic caused by SARS-CoV-2 is the most widely spread disease in the 21st century. Due to the continuous emergence of variants across the world, it is necessary to expand our understanding of host-virus interactions and explore new agents against SARS-CoV-2. In this study, it was found exopolysaccharides (EPSs) from halophilic archaeon Haloarcula hispanica ATCC33960 can bind to the spike protein of SARS-CoV-2 with the binding constant KD of 2.23 nM, block the binding of spike protein to Vero E6 and bronchial epithelial BEAS-2B cells, and inhibit pseudovirus infection. However, EPSs from the gene deletion mutant △HAH_1206 almost completely lost the antiviral activity against SARS-CoV-2. A significant reduction of glucuronic acid (GlcA) and the sulfation level in EPSs of △HAH_1206 was clearly observed. Our results indicated that sulfated GlcA in EPSs is possible for a main structural unit in their inhibition of binding of SARS-CoV-2 to host cells, which would provide a novel antiviral mechanism and a guide for designing new agents against SARS-CoV-2.

18.
BMC Med Res Methodol ; 22(1): 89, 2022 04 03.
Article in English | MEDLINE | ID: covidwho-1846794

ABSTRACT

BACKGROUND: Rapid Advice Guidelines (RAG) provide decision makers with guidance to respond to public health emergencies by developing evidence-based recommendations in a short period of time with a scientific and standardized approach. However, the experience from the development process of a RAG has so far not been systematically summarized. Therefore, our working group will take the experience of the development of the RAG for children with COVID-19 as an example to systematically explore the methodology, advantages, and challenges in the development of the RAG. We shall propose suggestions and reflections for future research, in order to provide a more detailed reference for future development of RAGs. RESULT: The development of the RAG by a group of 67 researchers from 11 countries took 50 days from the official commencement of the work (January 28, 2020) to submission (March 17, 2020). A total of 21 meetings were held with a total duration of 48 h (average 2.3 h per meeting) and an average of 16.5 participants attending. Only two of the ten recommendations were fully supported by direct evidence for COVID-19, three recommendations were supported by indirect evidence only, and the proportion of COVID-19 studies among the body of evidence in the remaining five recommendations ranged between 10 and 83%. Six of the ten recommendations used COVID-19 preprints as evidence support, and up to 50% of the studies with direct evidence on COVID-19 were preprints. CONCLUSIONS: In order to respond to public health emergencies, the development of RAG also requires a clear and transparent formulation process, usually using a large amount of indirect and non-peer-reviewed evidence to support the formation of recommendations. Strict following of the WHO RAG handbook does not only enhance the transparency and clarity of the guideline, but also can speed up the guideline development process, thereby saving time and labor costs.


Subject(s)
COVID-19 , COVID-19/epidemiology , Child , Disease Outbreaks , Guidelines as Topic , Humans , Public Health
19.
J Virol ; 96(9): e0003822, 2022 05 11.
Article in English | MEDLINE | ID: covidwho-1788914

ABSTRACT

Due to the limitation of human studies with respect to individual difference or the accessibility of fresh tissue samples, how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection results in pathological complications in lung, the main site of infection, is still incompletely understood. Therefore, physiologically relevant animal models under realistic SARS-CoV-2 infection conditions would be helpful to our understanding of dysregulated inflammation response in lung in the context of targeted therapeutics. Here, we characterized the single-cell landscape in lung and spleen upon SARS-CoV-2 infection in an acute severe disease mouse model that replicates human symptoms, including severe lung pathology and lymphopenia. We showed a reduction of lymphocyte populations and an increase of neutrophils in lung and then demonstrated the key role of neutrophil-mediated lung immunopathology in both mice and humans. Under severe conditions, neutrophils recruited by a chemokine-driven positive feedback produced elevated "fatal signature" proinflammatory genes and pathways related to neutrophil activation or releasing of granular content. In addition, we identified a new Cd177high cluster that is undergoing respiratory burst and Stfahigh cluster cells that may dampen antigen presentation upon infection. We also revealed the devastating effect of overactivated neutrophil by showing the highly enriched neutrophil extracellular traps in lung and a dampened B-cell function in either lung or spleen that may be attributed to arginine consumption by neutrophil. The current study helped our understanding of SARS-CoV-2-induced pneumonia and warranted the concept of neutrophil-targeting therapeutics in COVID-19 treatment. IMPORTANCE We demonstrated the single-cell landscape in lung and spleen upon SARS-CoV-2 infection in an acute severe disease mouse model that replicated human symptoms, including severe lung pathology and lymphopenia. Our comprehensive study revealed the key role of neutrophil-mediated lung immunopathology in SARS-CoV-2-induced severe pneumonia, which not only helped our understanding of COVID-19 but also warranted the concept of neutrophil targeting therapeutics in COVID-19 treatment.


Subject(s)
COVID-19 , Lung , Neutrophils , Animals , COVID-19/immunology , Disease Models, Animal , Humans , Lung/pathology , Lung/virology , Lymphopenia/virology , Mice , Neutrophils/immunology , SARS-CoV-2 , Spleen/pathology , Spleen/virology
20.
JMIR Public Health Surveill ; 8(2): e32638, 2022 02 10.
Article in English | MEDLINE | ID: covidwho-1686321

ABSTRACT

BACKGROUND: COVID-19, which emerged in December 2019, has spread rapidly around the world and has become a serious public health event endangering human life. With regard to COVID-19, there are still many unknowns, such as the exact case fatality rate (CFR). OBJECTIVE: The main objective of this study was to explore the value of the discharged CFR (DCFR) to make more accurate forecasts of epidemic trends of COVID-19 in Italy. METHODS: We retrieved the epidemiological data of COVID-19 in Italy published by the John Hopkins Coronavirus Resource Center. We then used the proportion of deaths to discharged cases(including deaths and recovered cases) to calculate the total DCFR (tDCFR), monthly DCFR (mDCFR), and stage DCFR (sDCFR). Furthermore, we analyzed the trend in the mDCFR between January and December 2020 using joinpoint regression analysis, used ArcGIS version 10.7 to visualize the spatial distribution of the epidemic CFR, and assigned different colors to each province based on the CFR or tDCFR. RESULTS: We calculated the numbers and obtained the new indices of the tDCFR and mDCFR for calculating the fatality rate. The results showed that the tDCFR and mDCFR fluctuated greatly from January to May. They first showed a rapid increase followed by a rapid decline after reaching the peak. The map showed that the provinces with a high tDCFR were Emilia-Romagna, Puglia, and Lombardia. The change trend of the mDCFR over time was divided into the following 2 stages: the first stage (from January to May) and the second stage (from June to December). With regard to worldwide COVID-19 statistics, among 6 selected countries, the United States had the highest tDCFR (4.26%), while the tDCFR of the remaining countries was between 0.98% and 2.72%. CONCLUSIONS: We provide a new perspective for assessing the fatality of COVID-19 in Italy, which can use ever-changing data to calculate a more accurate CFR and scientifically predict the development trend of the epidemic.


Subject(s)
COVID-19 , Epidemiologic Studies , Humans , Italy/epidemiology , SARS-CoV-2 , United States
SELECTION OF CITATIONS
SEARCH DETAIL