Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
2.
Innovation (N Y) ; 3(2): 100206, 2022 Mar 29.
Article in English | MEDLINE | ID: covidwho-1799659
3.
Journal of Medical Virology ; 94(5):i-i, 2022.
Article in English | Wiley | ID: covidwho-1750403

ABSTRACT

Front Cover Caption: The cover image is based on the Research Article Aggregation of high-frequency RBD mutations of SARS-CoV-2 with three VOCs did not cause significant antigenic drift by Tao Li et al., https://doi.org/10.1002/jmv.27596.

4.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-325218

ABSTRACT

SARS-CoV-2 can infect many domestic animals, including dogs. Herein, we show that dog angiotensin converting enzyme 2 (dACE2) can bind to SARS-CoV-2 spike (S) protein receptor binding region (RBD), and that both pseudotyped and authentic SARS-CoV-2 can infect dACE2-expressing cells. we solved the crystal structure of RBD in complex with dACE2 and found that the total numbers of contact residues, contact atoms, hydrogen bonds and salt bridges at the binding interface in this complex are slightly fewer than those in the complex of the RBD and human ACE2 (hACE2). This result is consistent with the fact that the binding affinity of RBD to dACE2 is lower than that to hACE2. We further show that a few important mutations in the RBD binding interface play a pivotal role in the binding affinity of RBD to both dACE2 and hACE2, and need intense monitoring and controlling.

5.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-312727

ABSTRACT

The rapid expansion of COVID-19 pandemic has made the development of a SARS-CoV-2 vaccine a global health and economic priority. Taking advantages of versatility and rapid development, three SARS-CoV-2 mRNA vaccine candidates has entered clinical trials with a two-dose immunization regimen. However, the waning antibodies response in convalescent patients after SARS-CoV-2 infection and the emergence of human re-infection have raised widespread concern about a short duration of SARS-CoV-2 vaccine protection. Here, we developed a nucleoside-modified mRNA vaccine in lipid-encapsulated form which encoded SARS-CoV-2 RBD, termed as mRNA-RBD. A single immunization of mRNA-RBD elicited both robust neutralizing antibody and cellular response, and conferred a near-complete protection against wild SARS-CoV-2 infection in lungs of hACE2 transgenic mice. Noticeably, high levels of neutralizing antibodies response induced by mRNA-RBD vaccination could maintain for at least 6.5 months and conferred a long-term remarkable protection for hACE2 transgenic mice against SARS-CoV-2 infection in sera transfer study. These data demonstrated that a single dose of mRNA-RBD provided long-term protection against SARS-CoV-2 challenge.

6.
Signal Transduct Target Ther ; 7(1): 18, 2022 01 19.
Article in English | MEDLINE | ID: covidwho-1639142

ABSTRACT

Emerging SARS-CoV-2 variants are the most serious problem for COVID-19 prophylaxis and treatment. To determine whether the SARS-CoV-2 vaccine strain should be updated following variant emergence like seasonal flu vaccine, the changed degree on antigenicity of SARS-CoV-2 variants and H3N2 flu vaccine strains was compared. The neutralization activities of Alpha, Beta and Gamma variants' spike protein-immunized sera were analysed against the eight current epidemic variants and 20 possible variants combining the top 10 prevalent RBD mutations based on the Delta variant, which were constructed using pseudotyped viruses. Meanwhile, the neutralization activities of convalescent sera and current inactivated and recombinant protein vaccine-elicited sera were also examined against all possible Delta variants. Eight HA protein-expressing DNAs elicited-animal sera were also tested against eight pseudotyped viruses of H3N2 flu vaccine strains from 2011-2019. Our results indicate that the antigenicity changes of possible Delta variants were mostly within four folds, whereas the antigenicity changes among different H3N2 vaccine strains were approximately 10-100-fold. Structural analysis of the antigenic characterization of the SARS-CoV-2 and H3N2 mutations supports the neutralization results. This study indicates that the antigenicity changes of the current SARS-CoV-2 may not be sufficient to require replacement of the current vaccine strain.


Subject(s)
Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , COVID-19 Vaccines/metabolism , COVID-19/prevention & control , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Substitution , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , Binding Sites , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/chemistry , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Gene Expression , Humans , Immune Sera/chemistry , Influenza A Virus, H3N2 Subtype/chemistry , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza Vaccines/metabolism , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Models, Molecular , Mutation , Neutralization Tests , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , SARS-CoV-2/chemistry , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
7.
J Med Virol ; 94(5): 2108-2125, 2022 05.
Article in English | MEDLINE | ID: covidwho-1627779

ABSTRACT

Variants of SARS-CoV-2 continue to emerge, posing great challenges in outbreak prevention and control. It is important to understand in advance the impact of possible variants of concern (VOCs) on infectivity and antigenicity. Here, we constructed one or more of the 15 high-frequency naturally occurring amino acid changes in the receptor-binding domain (RBD) of Alpha, Beta, and Gamma variants. A single mutant of A520S, V367F, and S494P in the above three VOCs enhanced infectivity in ACE2-overexpressing 293T cells of different species, LLC-MK2 and Vero cells. Aggregation of multiple RBD mutations significantly reduces the infectivity of the possible three VOCs. Regarding neutralization, it is noteworthy that E484K, N501Y, K417N, and N439K predispose to monoclonal antibodies (mAbs) protection failure in the 15 high-frequency mutations. Most importantly, almost all possible VOCs (single RBD mutation or aggregation of multiple mutations) showed no more than a fourfold decrease in neutralizing activity with convalescent sera, vaccine sera, and immune sera of guinea pigs with different immunogens, and no significant antigenic drift was formed. In conclusion, our pseudovirus results could reduce the concern that the aggregation of multiple high-frequency mutations in the RBD of the spike protein of the three VOCs would lead to severe antigenic drift, and this would provide value for vaccine development strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , COVID-19/therapy , Chlorocebus aethiops , Guinea Pigs , Humans , Immunization, Passive , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Vero Cells
8.
Genomics Proteomics Bioinformatics ; 2022 Jan 13.
Article in English | MEDLINE | ID: covidwho-1627176

ABSTRACT

A new variant of concern for SARS-CoV-2, Omicron (B.1.1.529), was designated by the World Health Organization on November 26, 2021. This study analyzed the viral genome sequencing data of 108 samples collected from patients infected with Omicron. First, we found that the enrichment efficiency of viral nucleic acids was reduced due to mutations in the region where the primers anneal to. Second, the Omicron variant possesses an excessive number of mutations compared to other variants circulating at the same time (62 vs. 45), especially in the Spike gene. Mutations in the Spike gene confer alterations in 32 amino acid residues, more than those observed in other SARS-CoV-2 variants. Moreover, a large number of nonsynonymous mutations occur in the codons for the amino acid residues located on the surface of the Spike protein, which could potentially affect the replication, infectivity, and antigenicity of SARS-CoV-2. Third, there are 53 mutations between the Omicron variant and its closest sequences available in public databases. Many of these mutations were rarely observed in public databases and had a low mutation rate. In addition, the linkage disequilibrium between these mutations was low, with a limited number of mutations (6) concurrently observed in the same genome, suggesting that the Omicron variant would be in a different evolutionary branch from the currently prevalent variants. To improve our ability to detect and track the source of new variants rapidly, it is imperative to further strengthen genomic surveillance and data sharing globally in a timely manner.

11.
China CDC Wkly ; 3(46): 967-972, 2021 Nov 12.
Article in English | MEDLINE | ID: covidwho-1513532

ABSTRACT

INTRODUCTION: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently emergent coronavirus of natural origin and caused the coronavirus disease (COVID-19) pandemic. The study of its natural origin and host range is of particular importance for source tracing, monitoring of this virus, and prevention of recurrent infections. One major approach is to test the binding ability of the viral receptor gene ACE2 from various hosts to SARS-CoV-2 spike protein, but it is time-consuming and labor-intensive to cover a large collection of species. METHODS: In this paper, we applied state-of-the-art machine learning approaches and created a pipeline reaching >87% accuracy in predicting binding between different ACE2 and SARS-CoV-2 spike. RESULTS: We further validated our prediction pipeline using 2 independent test sets involving >50 bat species and achieved >78% accuracy. A large-scale screening of 204 mammal species revealed 144 species (or 61%) were susceptible to SARS-CoV-2 infections, highlighting the importance of intensive monitoring and studies in mammalian species. DISCUSSION: In short, our study employed machine learning models to create an important tool for predicting potential hosts of SARS-CoV-2 and achieved the highest precision to our knowledge in experimental validation. This study also predicted that a wide range of mammals were capable of being infected by SARS-CoV-2.

12.
Front Microbiol ; 12: 753823, 2021.
Article in English | MEDLINE | ID: covidwho-1502330

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 2019 (COVID-19) pandemic. Understanding the influence of mutations in the SARS-CoV-2 gene on clinical outcomes is critical for treatment and prevention. Here, we analyzed all high-coverage complete SARS-CoV-2 sequences from GISAID database from January 1, 2020, to January 1, 2021, to mine the mutation hotspots associated with clinical outcome and developed a model to predict the clinical outcome in different epidemic strains. Exploring the cause of mutation based on RNA-dependent RNA polymerase (RdRp) and RNA-editing enzyme, mutation was more likely to occur in severe and mild cases than in asymptomatic cases, especially A > G, C > T, and G > A mutations. The mutations associated with asymptomatic outcome were mainly in open reading frame 1ab (ORF1ab) and N genes; especially R6997P and V30L mutations occurred together and were correlated with asymptomatic outcome with high prevalence. D614G, Q57H, and S194L mutations were correlated with mild and severe outcome with high prevalence. Interestingly, the single-nucleotide variant (SNV) frequency was higher with high percentage of nt14408 mutation in RdRp in severe cases. The expression of ADAR and APOBEC was associated with clinical outcome. The model has shown that the asymptomatic percentage has increased over time, while there is high symptomatic percentage in Alpha, Beta, and Gamma. These findings suggest that mutation in the SARS-CoV-2 genome may have a direct association with clinical outcomes and pandemic. Our result and model are helpful to predict the prevalence of epidemic strains and to further study the mechanism of mutation causing severe disease.

13.
Nat Commun ; 12(1): 6103, 2021 10 20.
Article in English | MEDLINE | ID: covidwho-1475296

ABSTRACT

Multiple SARS-CoV-2 variants of concern (VOCs) have been emerging and some have been linked to an increase in case numbers globally. However, there is yet a lack of understanding of the molecular basis for the interactions between the human ACE2 (hACE2) receptor and these VOCs. Here we examined several VOCs including Alpha, Beta, and Gamma, and demonstrate that five variants receptor-binding domain (RBD) increased binding affinity for hACE2, and four variants pseudoviruses increased entry into susceptible cells. Crystal structures of hACE2-RBD complexes help identify the key residues facilitating changes in hACE2 binding affinity. Additionally, soluble hACE2 protein efficiently prevent most of the variants pseudoviruses. Our findings provide important molecular information and may help the development of novel therapeutic and prophylactic agents targeting these emerging mutants.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Protein Interaction Domains and Motifs/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/isolation & purification , Angiotensin-Converting Enzyme 2/ultrastructure , Animals , Cell Line, Tumor , Crystallography, X-Ray , HEK293 Cells , Humans , Molecular Dynamics Simulation , Mutation , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , SARS-CoV-2/genetics , Sf9 Cells , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/isolation & purification , Spike Glycoprotein, Coronavirus/ultrastructure , Spodoptera , Surface Plasmon Resonance , Virus Attachment , Virus Internalization
14.
Nucleic Acids Res ; 50(D1): D888-D897, 2022 01 07.
Article in English | MEDLINE | ID: covidwho-1462429

ABSTRACT

The genomic variations of SARS-CoV-2 continue to emerge and spread worldwide. Some mutant strains show increased transmissibility and virulence, which may cause reduced protection provided by vaccines. Thus, it is necessary to continuously monitor and analyze the genomic variations of SARS-COV-2 genomes. We established an evaluation and prewarning system, SARS-CoV-2 variations evaluation and prewarning system (VarEPS), including known and virtual mutations of SARS-CoV-2 genomes to achieve rapid evaluation of the risks posed by mutant strains. From the perspective of genomics and structural biology, the database comprehensively analyzes the effects of known variations and virtual variations on physicochemical properties, translation efficiency, secondary structure, and binding capacity of ACE2 and neutralizing antibodies. An AI-based algorithm was used to verify the effectiveness of these genomics and structural biology characteristic quantities for risk prediction. This classifier could be further used to group viral strains by their transmissibility and affinity to neutralizing antibodies. This unique resource makes it possible to quickly evaluate the variation risks of key sites, and guide the research and development of vaccines and drugs. The database is freely accessible at www.nmdc.cn/ncovn.


Subject(s)
COVID-19/virology , Databases, Factual , Mutation , SARS-CoV-2/genetics , Algorithms , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/metabolism , Artificial Intelligence , DNA Primers , Genome, Viral , Humans
19.
Emerg Microbes Infect ; 10(1): 1519-1529, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1316787

ABSTRACT

The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutated continuously and newly emerging variants escape from antibody-mediated neutralization raised great concern. S protein is heavily glycosylated and the glycosylation sites are relatively conserved, thus glycans on S protein surface could be a target for the development of anti-SARS-CoV-2 strategies against variants. Here, we collected 12 plant-derived lectins with different carbohydrate specificity and evaluated their anti-SARS-CoV-2 activity against mutant strains and epidemic variants using a pseudovirus-based neutralization assay. The Lens culinaris-derived lentil lectin which specifically bind to oligomannose-type glycans and GlcNAc at the non-reducing end terminus showed most potent and broad antiviral activity against a panel of mutant strains and variants, including the artificial mutants at N-/O-linked glycosylation site, natural existed amino acid mutants, as well as the epidemic variants B.1.1.7, B.1.351, and P.1. Lentil lectin also showed antiviral activity against SARS-CoV and MERS-CoV. We found lentil lectin could block the binding of ACE2 to S trimer and inhibit SARS-CoV-2 at the early steps of infection. Using structural information and determined N-glycan profile of S trimer, taking together with the carbohydrate specificity of lentil lectin, we provide a basis for the observed broad spectrum anti-SARS-CoV-2 activity. Lentil lectin showed weak haemagglutination activity at 1 mg/mL and no cytotoxicity activity, and no weight loss was found in single injection mouse experiment. This report provides the first evidence that lentil lectin strongly inhibit infection of SARS-COV-2 variants, which should provide valuable insights for developing future anti-SARS-CoV-2 strategies.


Subject(s)
Antiviral Agents/pharmacology , Lens Plant/chemistry , Plant Extracts/pharmacology , Plant Lectins/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemistry , Humans , Mice , Mice, Inbred BALB C , Plant Extracts/chemistry , Plant Lectins/chemistry , SARS-CoV-2/growth & development , Seeds/chemistry
20.
Nat Commun ; 12(1): 4195, 2021 07 07.
Article in English | MEDLINE | ID: covidwho-1301166

ABSTRACT

SARS-CoV-2 can infect many domestic animals, including dogs. Herein, we show that dog angiotensin-converting enzyme 2 (dACE2) can bind to the SARS-CoV-2 spike (S) protein receptor binding domain (RBD), and that both pseudotyped and authentic SARS-CoV-2 can infect dACE2-expressing cells. We solved the crystal structure of RBD in complex with dACE2 and found that the total number of contact residues, contact atoms, hydrogen bonds and salt bridges at the binding interface in this complex are slightly fewer than those in the complex of the RBD and human ACE2 (hACE2). This result is consistent with the fact that the binding affinity of RBD to dACE2 is lower than that of hACE2. We further show that a few important mutations in the RBD binding interface play a pivotal role in the binding affinity of RBD to both dACE2 and hACE2. Our work reveals a molecular basis for cross-species transmission and potential animal spread of SARS-CoV-2, and provides new clues to block the potential transmission chains of this virus.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Animals , Binding Sites , Cell Line , Cricetinae , Crystallography, X-Ray , Dogs , HeLa Cells , Humans , Mutation , Protein Binding , Protein Domains , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL