Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
International Journal of Obesity ; 46(5):943-950, 2022.
Article in English | ProQuest Central | ID: covidwho-1815510

ABSTRACT

BackgroundHigher body mass index (BMI) and metabolic consequences of excess weight are associated with increased risk of severe COVID-19, though their mediating pathway is unclear.MethodsA prospective cohort study included 435,504 UK Biobank participants. A two-sample Mendelian randomisation (MR) study used the COVID-19 Host Genetics Initiative in 1.6 million participants. We examined associations of total adiposity, body composition, fat distribution and metabolic consequences of excess weight, particularly type 2 diabetes, with incidence and severity of COVID-19, assessed by test positivity, hospital admission, intensive care unit (ICU) admission and death.ResultsBMI and body fat were associated with COVID-19 in the observational and MR analyses but muscle mass was not. The observational study suggested the association with central fat distribution was stronger than for BMI, but there was little evidence from the MR analyses than this was causal. There was evidence that strong associations of metabolic consequences with COVID-19 outcomes in observational but not MR analyses. Type 2 diabetes was strongly associated with COVID-19 in observational but not MR analyses. In adjusted models, the observational analysis showed that the association of BMI with COVID-19 diminished, while central fat distribution and metabolic consequences of excess weight remained strongly associated. In contrast, MR showed the reverse, with only BMI retaining a direct effect on COVID-19.ConclusionsExcess total adiposity is probably casually associated with severe COVID-19. Mendelian randomisation data do not support causality for the observed associations of central fat distribution or metabolic consequences of excess adiposity with COVID-19.

2.
Can J Infect Dis Med Microbiol ; 2022: 1181283, 2022.
Article in English | MEDLINE | ID: covidwho-1770021

ABSTRACT

By studying the distribution and drug resistance of bacterial pathogens associated with lower respiratory tract infection (LRTI) in children in Chengdu and the effect of the COVID-19 on the distribution of pathogens and by analyzing the epidemic trend and drug resistance changes of the main pathogens of LRTI, this research is supposed to provide a useful basis for the prevention of LRTI in children and the rational use of drugs in clinical practice. Hospitalized children clinically diagnosed with LRTI in Chengdu Women and Children's Central Hospital from 2011 to 2020 were selected as the study subjects. The pathogens of LRTI in children and the distribution of pathogens in different ages, genders, seasons, years, and departments and before and after the pandemic situation of COVID-19 were counted. The drug resistance distribution of the top six pathogens with the highest infection rate in the past three years and the trend of drug resistance in the past decade were analyzed. A total of 26,469 pathogens were isolated. Among them, 6240 strains (23.6%) were Gram-positive bacteria, 20152 strains (76.1%) were Gram-negative bacteria, and 73 strains (0.3%) were fungi. Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae, and Staphylococcus aureus were highly isolated in the group of infants aged 0-1 (P < 0.01), Moraxella catarrhalis and Streptococcus pneumoniae were highly isolated in children aged 1-6 (P < 0.01), and Haemophilus influenzae was highly isolated in children over 1 (P < 0.01). The isolation rates of Enterobacteriaceae, Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Staphylococcus aureus, and Candida albicans in the lower respiratory tract of 0-1 year-old male infants were higher than those of female infants (p < 0.05). Haemophilus influenzae was highly isolated in spring and summer, and Moraxella catarrhalis was highly isolated in autumn and winter, while the infection of Streptococcus pneumoniae was mainly concentrated in winter. This difference was statistically significant (P < 0.01). Affected by the COVID-19 pandemic, the isolation rates of Haemophilus influenzae and Streptococcus pneumoniae were significantly lower than those before the pandemic, and the isolation rate of Moraxella catarrhalis was significantly higher. The difference was statistically significant (P < 0.01). The proportion of isolated negative bacteria in NICU and PICU was higher than that in positive bacteria, and the infection rates of Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae, and Acinetobacter baumannii were higher than those in other departments. The differences were statistically significant (P < 0.01). The results of drug sensitivity test showed that the drug resistance of Haemophilus influenzae and Moraxella catarrhalis was mainly concentrated in Ampicillin, First- and Second-generation cephalosporins, and Cotrimoxazole, with stable sensitivity to Third-generation cephalosporins, while the drug resistance of Streptococcus pneumoniae was concentrated in Macrolides, Sulfonamides, and Tetracyclines, with stable sensitivity to Penicillin. Staphylococcus aureus is highly resistant to penicillins and macrolides and susceptible to vancomycin. Enterobacteriaceae resistance is concentrated in cephalosporins, with a low rate of carbapenem resistance. From 2018 to 2020, 1557 strains of Staphylococcus aureus were isolated, of which 416 strains were MRSA, accounting for 27% of the isolates; 1064 strains of Escherichia coli were isolated, of which 423 strains were ESBL and 23 strains were CRE, accounting for 40% and 2% of the isolates, respectively; and 1400 strains of Klebsiella pneumoniae were isolated, of which 385 strains were ESBL and 402 strains were CRE, accounting for 28% and 29% of the isolates, respectively. Since 2011, the resistance of Escherichia coli and Klebsiella pneumoniae to Third-generation cephalosporins has increased, peaking in 2017, and has decreased after 2018, years after which carbapenem resistance has increased significantly, corresponding to an increase in the detection rate of Carbapenem-resistant Enterobacteriaceae CRE. Findings from this study revealed that there are significant differences in community-associated infectious pathogens before and after the COVID-19 pandemic, and there are significant age differences, seasonal epidemic trends, and high departmental correlation of pathogens related to lower respiratory tract disease infection in children. There was a significant gender difference in the isolation rate of pathogens associated with LRTI in infants under one year. Vaccination, implementation of isolation measures and social distance, strengthening of personal protective measures, aseptic operation of invasive medical treatment, hand hygiene, and environmental disinfection are beneficial to reducing community-associated pathogen infection, opportunistic pathogen infection, and an increase in resistant bacteria. The strengthening of bacterial culture of lower respiratory tract samples by pediatricians is conducive to the diagnosis of respiratory tract infections caused by different pathogens, contributing to the selection of effective drugs for treatment according to drug susceptibility results, which is important for the rational use of antibiotics and curbing bacterial resistance.

3.
Risk management and healthcare policy ; 15:447-456, 2022.
Article in English | EuropePMC | ID: covidwho-1743744

ABSTRACT

Purpose Fever is one of the most typical clinical symptoms of coronavirus disease 2019 (COVID-19), and non-contact infrared thermometers (NCITs) are commonly used to screen for fever. However, there is a lack of authoritative data to define a “fever” when an NCIT is used and previous studies have shown that NCIT readings fluctuate widely depending on ambient temperatures and the body surface site screened. The aim of this study was to establish cut-off points for normal temperatures of different body sites (neck, forehead, temples, and wrist) and investigate the accuracy of NCITs at various ambient temperatures to improve the standardization and accuracy of fever screening. Patients and Methods A prospective investigation was conducted among 904 participants in the outpatient and emergency departments of Chengdu Women’s and Children’s Central Hospital. Body temperature was measured using NCITs and mercury axillary thermometers. A receiver operating characteristic curve was used to determine the accuracy of body temperature detection at the four body surface sites. Data on participant characteristics were also collected. Results Among the four surface sites, the neck temperature detection group had the highest accuracy. When the neck temperature was 37.35°C as the optimum fever diagnostic threshold, the sensitivity was 0.866. The optimum fever diagnostic thresholds for forehead, temporal, and wrist temperature were 36.65°C, 36.65°C, and 36.75°C, respectively. Moreover, triple neck temperature detection had the highest sensitivity, up to 0.998, whereas the sensitivity of triple wrist temperature detections was 0.949. Notably, the accuracy of NCITs significantly reduced when the temperature was lower than 18°C. Conclusion Neck temperature had the highest accuracy among the four NCIT temperature measurement sites, with an optimum fever diagnostic threshold of 37.35°C. Considering the findings reported in our study, we recommend triple neck temperature detection with NCITs as the fever screening standard for COVID-19.

4.
Frontiers in pharmacology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1728515

ABSTRACT

Background and Objective: COVID-19 has struck our society as a great calamity, and the need for effective anti-viral drugs is more urgent than ever. Papain-like protease (PLpro) of SARS CoV-2 plays important roles in virus maturation, dysregulation of host inflammation, and antiviral immune responses, which is being regarded as a promising druggable target for the treatment of COVID-19. Here, we carried out a combined screening approach to identify novel and highly potent PLpro inhibitors for the treatment of COVID-19. Methods: We used a combined screening approach of structure-based pharmacophore modeling and molecular docking to screen an in-house database containing 35,000 compounds. SARS CoV-2 PLpro inhibition assay was used to carry out the biological evaluation of hit compounds. Molecular dynamics (MD) simulations were conducted to check the stability of the PLpro-hit complexes predicted by molecular docking. Results: We found that four hit compounds showed excellent inhibitory activities against PLpro with IC50 values ranging from 0.6 to 2.4 μM. Among them, the most promising compound, hit 2 is the best PLpro inhibitor and its inhibitory activity was about 4 times higher than that of the positive control (GRL0617). The study of MD simulations indicated that four hits could bind stably to the active site of PLpro. Further study of interaction analysis indicated that hit 2 could form hydrogen-bond interactions with the key amino acids such as Gln269 and Asp164 in the PLpro-active site. Conclusion: Hit 2 is a novel and highly potent PLpro inhibitor, which will open the way for the development of clinical PLpro inhibitors for the treatment of COVID-19.

5.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-324321

ABSTRACT

SARS-CoV-2 can remain viable on the protective face masks surface for several days. Mask touching, reuse and disposal occurs frequently, leading to increased risk of cross-contamination, infection and further transmission. Cuprous-oxide has potent virucidal properties. We determined the capacity of surgical face masks (type IIR) made with nonwoven fabric impregnated with cuprous-oxide microparticles (Test Fabric), to inactivate SARS-CoV-2 when in direct contact with the virus. The Test Fabric reduced the infectious titers of SARS-CoV-2 by 0.73, 3.02 and 4.19 log10 within 5, 30 and 60 minutes, respectively. In contrast, the infectious titers of the virus were reduced by Control Fabric by 0.24, 0.67 and 0.97 within 5, 30 and 60 minutes, respectively. The reductions were significantly higher in the Test Fabric than in the Control Fabric (0.49, 2.35 and 3.22 log difference, accordingly), reaching a statistically significant difference after 5 minutes (p < 0.01). The mask filtration properties were not affected by the presence of the cuprous oxide microparticles. We conclude that the use of cuprous-oxide containing face masks in the external layers of respiratory face masks may significantly reduce the risk of SARS-CoV-2 cross-contamination, transmission and infection, due to masks handling and disposal, especially when used by the general population.

6.
Int J Environ Res Public Health ; 19(3)2022 01 29.
Article in English | MEDLINE | ID: covidwho-1667139

ABSTRACT

A cross-layer non-vertical transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) occurred in a quarantine hotel in Guangzhou, Guangdong Province, China in June 2021. To explore the cross-layer transmission path and influencing factors of viral aerosol, we set up different scenarios to carry out simulation experiments. The results showed that the air in the polluted room can enter the corridor by opening the door to take food and move out the garbage, then mix with the fresh air taken from the outside as part of the air supply of the central air conditioning system and re-enter into different rooms on the same floor leading to the same-layer transmission. In addition, flushing the toilet after defecation and urination will produce viral aerosol that pollutes rooms on different floors through the exhaust system and the vertical drainage pipe in the bathroom, resulting in cross-layer vertical transmission, also aggravating the transmission in different rooms on the same floor after mixing with the air of the room and entering the corridor to become part of the air supply, and meanwhile, continuing to increase the cross-layer transmission through the vertical drainage pipe. Therefore, the air conditioning and ventilation system of the quarantine hotel should be operated in full fresh air mode and close the return air; the exhaust volume of the bathroom should be greater than the fresh air volume. The exhaust pipe of the bathroom should be independently set and cannot be interconnected or connected in series. The riser of the sewage and drainage pipeline of the bathroom should maintain vertical to exhaust independently and cannot be arbitrarily changed to horizontal pipe assembly.


Subject(s)
COVID-19 , SARS-CoV-2 , Aerosols , Air Conditioning , Humans , Quarantine
7.
Int J Obes (Lond) ; 2022 Jan 14.
Article in English | MEDLINE | ID: covidwho-1621220

ABSTRACT

BACKGROUND: Higher body mass index (BMI) and metabolic consequences of excess weight are associated with increased risk of severe COVID-19, though their mediating pathway is unclear. METHODS: A prospective cohort study included 435,504 UK Biobank participants. A two-sample Mendelian randomisation (MR) study used the COVID-19 Host Genetics Initiative in 1.6 million participants. We examined associations of total adiposity, body composition, fat distribution and metabolic consequences of excess weight, particularly type 2 diabetes, with incidence and severity of COVID-19, assessed by test positivity, hospital admission, intensive care unit (ICU) admission and death. RESULTS: BMI and body fat were associated with COVID-19 in the observational and MR analyses but muscle mass was not. The observational study suggested the association with central fat distribution was stronger than for BMI, but there was little evidence from the MR analyses than this was causal. There was evidence that strong associations of metabolic consequences with COVID-19 outcomes in observational but not MR analyses. Type 2 diabetes was strongly associated with COVID-19 in observational but not MR analyses. In adjusted models, the observational analysis showed that the association of BMI with COVID-19 diminished, while central fat distribution and metabolic consequences of excess weight remained strongly associated. In contrast, MR showed the reverse, with only BMI retaining a direct effect on COVID-19. CONCLUSIONS: Excess total adiposity is probably casually associated with severe COVID-19. Mendelian randomisation data do not support causality for the observed associations of central fat distribution or metabolic consequences of excess adiposity with COVID-19.

8.
Sci Adv ; 7(51): eabj1281, 2021 Dec 17.
Article in English | MEDLINE | ID: covidwho-1575234

ABSTRACT

RNA amplification tests sensitively detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but their complexity and cost are prohibitive for expanding coronavirus disease 2019 (COVID-19) testing. We developed "Harmony COVID-19," a point-of-care test using inexpensive consumables, ready-to-use reagents, and a simple device. Our ready-to-use, multiplexed reverse transcription, loop-mediated isothermal amplification (RT-LAMP) can detect down to 0.38 SARS-CoV-2 RNA copies/µl and can report in 17 min for high­viral load samples (5000 copies/µl). Harmony detected 97 or 83% of contrived samples with ≥0.5 viral particles/µl in nasal matrix or saliva, respectively. Evaluation in clinical nasal specimens (n = 101) showed 100% detection of RNA extracted from specimens with ≥0.5 SARS-CoV-2 RNA copies/µl, with 100% specificity in specimens positive for other respiratory pathogens. Extraction-free analysis (n = 29) had 95% success in specimens with ≥1 RNA copies/µl. Usability testing performed first time by health care workers showed 95% accuracy.

9.
J Alzheimers Dis ; 85(2): 729-744, 2022.
Article in English | MEDLINE | ID: covidwho-1518457

ABSTRACT

BACKGROUND: COVID-19 pandemic is a global crisis which results in millions of deaths and causes long-term neurological sequelae, such as Alzheimer's disease (AD). OBJECTIVE: We aimed to explore the interaction between COVID-19 and AD by integrating bioinformatics to find the biomarkers which lead to AD occurrence and development with COVID-19 and provide early intervention. METHODS: The differential expressed genes (DEGs) were found by GSE147507 and GSE132903, respectively. The common genes between COVID-19 and AD were identified. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interactions (PPI) network analysis were carried out. Hub genes were found by cytoscape. A multivariate logistic regression model was constructed. NetworkAnalyst was used for the analysis of TF-gene interactions, TF-miRNA coregulatory network, and Protein-chemical Interactions. RESULTS: Forty common DEGs for AD and COVID-19 were found. GO and KEGG analysis indicated that the DEGs were enriched in the calcium signal pathway and other pathways. A PPI network was constructed, and 5 hub genes were identified (ITPR1, ITPR3, ITPKB, RAPGEF3, MFGE8). Four hub genes (ITPR1, ITPR3, ITPKB, RAPGEF3) which were considered as important factors in the development of AD that were affected by COVID-19 were shown by nomogram. Utilizing NetworkAnalyst, the interaction network of 4 hub genes and TF, miRNA, common AD risk genes, and known compounds is displayed, respectively. CONCLUSION: COVID-19 patients are at high risk of developing AD. Vaccination is required. Four hub genes can be considered as biomarkers for prediction and treatment of AD development caused by COVID-19. Compounds with neuroprotective effects can be used as adjuvant therapy for COVID-19 patients.


Subject(s)
Alzheimer Disease/genetics , COVID-19/virology , Protein Interaction Maps/genetics , SARS-CoV-2/pathogenicity , Alzheimer Disease/complications , Alzheimer Disease/metabolism , Alzheimer Disease/virology , Computational Biology/methods , Databases, Genetic , Gene Expression Profiling/methods , Humans , SARS-CoV-2/genetics
10.
Risk Manag Healthc Policy ; 14: 4177-4183, 2021.
Article in English | MEDLINE | ID: covidwho-1477678

ABSTRACT

OBJECTIVE: In order to fight against coronavirus disease 2019 (COVID-19) better and to share our experience as a reference for clinical laboratory departments. METHODS: This was a retrospective study conducted in the clinical laboratory department of Chengdu Women's and Children's Central Hospital in Chengdu, China, from April 2020 to January 2021. The number of nucleic acid and antibody testing specimens of suspected COVID-19 cases was analyzed. The key points of suspected-case sample processing and detection in the clinical laboratory department were summarized. The laboratory was directly involved in the sample processing and testing of suspected cases, the release of reports, and the transfer of specimens to the fever clinic. RESULTS: The number of COVID-19 nucleic acid test specimens in our laboratory ranged from 102 to 2170 per day, and the number of antibody test specimens ranged from 24 to 391 per day. There were four main considerations in the treatment and detection of suspected-case specimens in the clinical laboratory: biosafety management in clinical laboratory departments, measures to ensure the health of the staff, the eight time points for processing suspected-case samples (turn-around time), and key points for the detection of suspected case specimens. CONCLUSION: The laboratory developed a protective process for COVID-19 antibody and nucleic acid detection during the pandemic. At present, the detection of COVID-19 antibodies and nucleic acids in the clinical laboratory department is orderly, and there have been no cases of laboratory infection.

11.
China CDC Wkly ; 3(41): 859-862, 2021 Oct 08.
Article in English | MEDLINE | ID: covidwho-1456702
12.
Vaccine ; 39(41): 6111-6116, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1386705

ABSTRACT

Little is known about COVID-19 mRNA vaccine humoral immune responses in patients with central nervous system autoimmune demyelinating diseases, multiple sclerosis (MS) and neuromyelitis optica (NMO), who are on B-cell depleting therapies (BCDT) and other disease modifying therapies (DMTs). We conducted a single center prospective study to identify the clinical and immunological features associated with vaccine-induced antibody response in 53 participants before and after COVID-19 mRNA vaccination. This is the first report on the anti-spike RBD and anti-nucleocapsid antibody response, along with pre- and post-vaccine absolute lymphocyte counts (ALC) and flow cytometry analysis of CD19 and CD20 lymphocytes in patients with MS and NMO. We tested the hypothesis that patients on BCDT may have impaired COVID-19 vaccine humoral responses. Among patients on BCDT, 36.4% demonstrated a positive antibody response to spike RBD, in comparison to 100% in all other groups such as healthy controls, untreated MS, and patients on non-B cell depleting DMTs (p < 0.0001). Immunological data revealed lower baseline (pre-vaccination) levels of IgM in patients on BCDT (p = 0.003). Low CD19 and CD20 counts and a shorter interval from the last B cell depleting therapy infusion to the first vaccine dose were associated with a negative spike RBD antibody response (non-seroconverter) in patients on BCDT. Age, body mass index (BMI) and total treatment duration did not differ between seroconverters and non-seroconverters.


Subject(s)
COVID-19 , Multiple Sclerosis , COVID-19 Vaccines , Humans , Multiple Sclerosis/therapy , Prospective Studies , RNA, Messenger , SARS-CoV-2
13.
China CDC Wkly ; 3(34): 711-715, 2021 Aug 20.
Article in English | MEDLINE | ID: covidwho-1366005

ABSTRACT

WHAT IS ALREADY KNOWN ON THIS TOPIC?: Aerosol transmission was one route for the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and usually occurred in confined spaces. WHAT IS ADDED BY THIS REPORT?: Aerosol transmission was found to exist between handshake buildings, i.e., buildings with extremely close proximity that formed relatively enclosed spaces. Transmission was mainly affected by the airflow layout caused by switching air conditioners on and off as well as opening and closing doors and windows. WHAT ARE THE IMPLICATIONS FOR PUBLIC HEALTH PRACTICE?: Centralized isolation and home isolation in handshake buildings creates a risk of SARS-CoV-2 aerosol transmission under certain conditions. Attention should be paid to the influence of air distribution layout on aerosol diffusion in isolation wards, and disinfection of isolation venues should be strengthened.

14.
Arab J Sci Eng ; : 1-9, 2021 Jun 28.
Article in English | MEDLINE | ID: covidwho-1286204

ABSTRACT

Background The Coronavirus Disease 2019 (COVID-19) had become a Public Health Emergency of International Concern with more than 90 million confirmed cases worldwide. Therefore, this study aims to establish a predictive score model of progression to severe type in patients with COVID-19. Methods This is a retrospective cohort study of 151 patients with COVID-19 diagnosed by nucleic acid test or specific serum antibodies from February 13, 2020, to March 14, 2020, hospitalized in a COVID-19-designed hospital in Wuhan, China. Results Of the 151 patients with average age of 63 years, 64 patients were male (42.4%), and 29 patients (19.2%) were classified as severe group. Multivariate analysis showed that age > 65 years (odds ratio [OR] = 9.72, 95%CI: 2.92-32.31, P < 0.001), lymphocyte count ≤ 1.1 × 109/L (OR = 3.42, 95%CI: 1.24-9.41, P = 0.017) and AST > 35 U/L (OR = 3.19, 95%CI: 1.11-9.19, P = 0.032) were independent risk factors for the disease severity. The area under curve (AUC) of receiver operating characteristic curve of the probabilities of the composite continuous variable (age + lymphocyte + AST) is 0.796. Finally, a predictive score model called ALA was established, and its AUC was 0.83 (95%CI: 0.75-0.92). Using a cutoff value of 9.5 points, the positive and negative predictive values were 54.1% (38-70.1%) and 92.1% (87.2-97.1%), respectively. Conclusion The ALA score model can quickly identify severe patients with COVID-19, so as to help clinicians to better choose accurate management strategy.

15.
Atmosphere ; 12(6):788, 2021.
Article in English | MDPI | ID: covidwho-1273383

ABSTRACT

In the context of the outbreak of coronavirus disease 2019 (COVID-19), strict lockdown policies were implemented to control nonessential human activities in Xi’an, northwest China, which greatly limited the spread of the pandemic and affected air quality. Compared with pre-lockdown, the air quality index and concentrations of PM2.5, PM10, SO2, and CO during the lockdown reduced, but the reductions were not very significant. NO2 levels exhibited the largest decrease (52%) during lockdown, owing to the remarkable decreased motor vehicle emissions. The highest K+ and lowest Ca2+ concentrations in PM2.5 samples could be attributed to the increase in household biomass fuel consumption in suburbs and rural areas around Xi’an and the decrease in human physical activities in Xi’an (e.g., human travel, vehicle emissions, construction activities), respectively, during the lockdown period. Secondary chemical reactions in the atmosphere increased in the lockdown period, as evidenced by the increased O3 level (increased by 160%) and OC/EC ratios in PM2.5 (increased by 26%), compared with pre-lockdown levels. The results, based on a natural experiment in this study, can be used as a reference for studying the formation and source of air pollution in Xi’an and provide evidence for establishing future long-term air pollution control policies.

17.
Psychol Health Med ; 27(2): 312-324, 2022 02.
Article in English | MEDLINE | ID: covidwho-1155733

ABSTRACT

The aims of the study were to assess the contribution of resilience, coping style, and COVID-19 stress on the quality of life (QOL) in frontline health care workers (HCWs). The study was a cross-sectional surveyperformed among 309 HCWs in a tertiaryhospital during the outbreak of COVID-19 in China. Data were collected through an anonymous, self-rated questionnaire, including demographic data, a 10-item COVID-19 stress questionnaire, Generic QOL Inventory-74, Connor-Davidson Resilience Scale, and the Simplified Coping Style Questionnaire. Hierarchical regression was used to analyse the relationship between the study variables and the QOL. Among the 309 participants, resilience and active coping were positively correlated with the QOL (P<0.001), whereas, working in confirmed case wards, COVID-19 stress, and passive coping were negatively correlated with the QOL (P<0.001). Resilience and the active coping were negatively correlated with COVID-19 stress (P<0.001). Resilience, coping style,and COVID-19 stressaccounted for 32%, 13%, and 8% of the variance in predicting the Global QOL, respectively. In conclusion, working in confirmed COVID-19 case wards and COVID-19 stress impaired the QOL in HCWs. Psychological intervention to improve the resilience and coping style, and reduce COVID-19 stress are important in improving the QOL and mental health of HCWs.


Subject(s)
COVID-19 , Resilience, Psychological , Adaptation, Psychological , COVID-19/epidemiology , Cross-Sectional Studies , Health Personnel/psychology , Humans , Quality of Life , SARS-CoV-2
18.
Sci Total Environ ; 778: 146040, 2021 Jul 15.
Article in English | MEDLINE | ID: covidwho-1117650

ABSTRACT

From June 11, 2020, a surge in new cases of coronavirus disease 2019 (COVID-19) in the largest wholesale market of Beijing, the Xinfadi Market, leading to a second wave of COVID-19 in Beijing, China. Understanding the transmission modes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the personal behaviors and environmental factors contributing to viral transmission is of utmost important to curb COVID-19 rise. However, currently these are largely unknown in food markets. To this end, we completed field investigations and on-site simulations in areas with relatively high infection rates of COVID-19 at Xinfadi Market. We found that if goods were tainted or personnel in market was infected, normal transaction behaviors between sellers and customers, daily physiological activities, and marketing activities could lead to viral contamination and spread to the surroundings via fomite, droplet or aerosol routes. Environmental factors such as low temperature and high humidity, poor ventilation, and insufficient hygiene facilities and disinfection practices may contribute to viral transmission in Xinfadi Market. In addition, precautionary control strategies were also proposed to effectively reduce the clustering cases of COVID-19 in large-scale wholesale markets.


Subject(s)
COVID-19 , SARS-CoV-2 , Beijing/epidemiology , China/epidemiology , Humans , Risk Factors
19.
EBioMedicine ; 64: 103236, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1083288

ABSTRACT

BACKGROUND: Detection of SARS-CoV-2 infections is important for treatment, isolation of infected and exposed individuals, and contact tracing. RT-qPCR is the "gold-standard" method to sensitively detect SARS-CoV-2 RNA, but most laboratory-developed RT-qPCR assays involve complex steps. Here, we aimed to simplify RT-qPCR assays by streamlining reaction setup, eliminating RNA extraction, and proposing reduced-cost detection workflows that avoid the need for expensive qPCR instruments. METHOD: A low-cost RT-PCR based "kit" was developed for faster turnaround than the CDC developed protocol. We demonstrated three detection workflows: two that can be deployed in laboratories conducting assays of variable complexity, and one that could be simple enough for point-of-care. Analytical sensitivity was assessed using SARS-CoV-2 RNA spiked in simulated nasal matrix. Clinical performance was evaluated using contrived human nasal matrix (n = 41) and clinical nasal specimens collected from individuals with respiratory symptoms (n = 110). FINDING: The analytical sensitivity of the lyophilised RT-PCR was 10 copies/reaction using purified SARS-CoV-2 RNA, and 20 copies/reaction when using direct lysate in simulated nasal matrix. Evaluation of assay performance on contrived human matrix showed 96.7-100% specificity and 100% sensitivity at ≥20 RNA copies. A head-to-head comparison with the standard CDC protocol on clinical specimens showed 83.8-94.6% sensitivity and 96.8-100% specificity. We found 3.6% indeterminate samples (undetected human control), lower than 8.1% with the standard protocol. INTERPRETATION: This preliminary work should support laboratories or commercial entities to develop and expand access to Covid-19 testing. Software guidance development for this assay is ongoing to enable implementation in other settings. FUND: USA NIH R01AI140845 and Seattle Children's Research Institute.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19 , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/genetics , Humans , Sensitivity and Specificity
20.
Ann Palliat Med ; 10(2): 1928-1949, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1068178

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) is an emerging pandemic of global public health concern. We aimed to summarize the characteristics of COVID-19 patients in the early stage of the pandemic and explore the risk factors of disease progression. METHODS: We conducted a systematic review with meta-analysis, searching three databases for studies published between January 1, 2020, and March 18, 2020. We used random-effects models to calculate the 95% confidence intervals of pooled estimated prevalence and the odds ratio between the severe and nonsevere cases. RESULTS: Ninety studies involving 16,526 COVID-19 patients were included. Hypertension (19.1%) and diabetes (9.5%) were the most common comorbidities. The most prevalent clinical symptoms were fever (78.4%), cough (58.5%), and fatigue (26.4%). Increased serum ferritin (74.2%), high C-reactive protein (73.3%), and high erythrocyte sedimentation rate (ESR) (72.2%) were the most frequently reported laboratory abnormalities. Most patients had bilateral lung involvement (82.2%) and showed peripheral (66.9%) and subpleural (62.1%) distribution, with multifocal involvement (73.1%). And the most common CT features were vascular enlargement (64.3%), ground-glass opacity (GGO) (60.7%), and thickened interlobular septa (55.1%). Respiratory failure was the most common complication (30.7%) and the overall case-fatality rate (CFR) was 4.2%. Moreover, male, history of smoking, and comorbidities might influence the prognosis. Most clinical symptoms such as fever, high fever, cough, sputum production, fatigue, shortness of breath, dyspnoea, and abdominal pain were linked to the severity of disease. Some specific laboratory indicators implied the deterioration of disease, such as leucocytosis, lymphopenia, platelet, alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin, creatinine, creatine kinase (CK), lactic dehydrogenase (LDH), C-reactive protein, procalcitonin (PCT), and D-dimer. Besides, the risk of bilateral pneumonia, consolidation, pleural effusion, and enlarged mediastinal nodes was higher in severe cases. CONCLUSIONS: Most COVID-19 patients have fever and cough with lymphopenia and increased inflammatory indices, and the main CT feature is GGO involved bilateral lung. Patients with comorbidities and worse clinical symptoms, laboratory characteristics, and CT findings tend to have poor disease progression.


Subject(s)
COVID-19/diagnosis , Biomarkers/blood , COVID-19/blood , COVID-19/pathology , Comorbidity , Cough , Fever , Humans , Inflammation , Lung/diagnostic imaging , Lung/pathology , Lymphopenia , Retrospective Studies , Risk Factors , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL