ABSTRACT
Objectives: To investigate respiratory virus infections in diarrhea cases and identify the risk of respiratory virus transmission through feces. Methods: Fecal specimens were collected from diarrhea cases in enteric disease clinics in Beijing, China, from 2019 to 2020. Cases that tested negative for norovirus, rotavirus, sapovirus, astrovirus, and enteric adenovirus were included in the study. Real-time RT-PCR was used to detect 16 groups of respiratory viruses, and the major viruses were genotyped. Viruses isolation and digestion of clinical specimens and nucleic acid by artificial gastric acid or artificial bile/pancreatic juice were used to evaluate the risk of respiratory virus transmission through feces. Results: A total of 558 specimens were collected and 47 (8.42%) specimens were detected positive, 40 (13.33%, 40/300) in 2019, and 7 (2.71%, 7/258) in 2020, including 20 (3.58%) for human rhinovirus (HRV), 13 (2.32%) for Bocavirus (BoV), 6 (1.08%) for parainfluenza virus I (PIV), 4 (0.72%) for coronavirus (CoV) OC43, 3 (0.54%) for respiratory syncytial virus (RSV) A, and 1 (0.18%) for both BoV and CoV OC43. Syndrome coronavirus 2 (SARS-CoV-2) and other viruses were not detected in this study. Eight genotypes were identified in the 13 HRV specimens. BoVs 1 and 2 were identified in nine BoV specimens. HRV infectious virions were successfully isolated from 2 clinical specimens and clinical specimens of HRV, RSV, PIV, and CoV could not be detected after 4 h of digestion and their nucleic acid could not be detected after 2 h of digestion by artificial gastric acid or artificial bile/pancreatic juice. Conclusion: There may be a risk of respiratory virus transmission from diarrhea cases, and interventions against SARS-COV-2 epidemics are also effective for other respiratory viruses.
ABSTRACT
BACKGROUND: Due to the national dynamic zero-COVID strategy in China, there were no persistent local transmissions of SARS-CoV-2 in Beijing before December, 2022. However, imported cases have been frequently detected over the past 3 years. With soaring growth in the number of COVID-19 cases in China recently, there are concerns that there might be an emergence of novel SARS-CoV-2 variants. Routine surveillance of viral genomes has been carried out in Beijing over the last 3 years. Spatiotemporal analyses of recent viral genome sequences compared with that of global pooled and local data are crucial for the global response to the ongoing COVID-19 pandemic. METHODS: We routinely collected respiratory samples covering both imported and local cases in Beijing for the last 3 years (of which the present study pertains to samples collected between January and December, 2022), and then randomly selected samples for analysis. Next-generation sequencing was used to generate the SARS-CoV-2 genomes. Phylogenetic and population dynamic analyses were performed using high-quality complete sequences in this study. FINDINGS: We obtained a total of 2994 complete SARS-CoV-2 genome sequences in this study, among which 2881 were high quality and were used for further analysis. From Nov 14 to Dec 20, we sequenced 413 new samples, including 350 local cases and 63 imported cases. All of these genomes belong to the existing 123 Pango lineages, showing there are no persistently dominant variants or novel lineages. Nevertheless, BA.5.2 and BF.7 are currently dominant in Beijing, accounting for 90% of local cases since Nov 14 (315 of 350 local cases sequenced in this study). The effective population size for both BA.5.2 and BF.7 in Beijing increased after Nov 14, 2022. INTERPRETATION: The co-circulation of BF.7 and BA.5.2 has been present in the current outbreak since Nov 14, 2022 in Beijing, and there is no evidence that novel variants emerged. Although our data were only from Beijing, the results could be considered a snapshot of China, due to the frequent population exchange and the presence of circulating strains with high transmissibility. FUNDING: National Key Research and Development Program of China and Strategic Priority Research Program of the Chinese Academy of Sciences. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Beijing , Phylogeny , PandemicsABSTRACT
BACKGROUND: The SARS-CoV-2 containment strategy has been successful in mainland China prior to the emergence of Omicron. However, in the era of highly transmissible variants, whether it is possible for China to sustain a local containment policy and under what conditions China could transition away from it are of paramount importance at the current stage of the pandemic. METHODS: We developed a spatially structured, fully stochastic, individual-based SARS-CoV-2 transmission model to evaluate the feasibility of sustaining SARS-CoV-2 local containment in mainland China considering the Omicron variants, China's current immunization level, and nonpharmaceutical interventions (NPIs). We also built a statistical model to estimate the overall disease burden under various hypothetical mitigation scenarios. RESULTS: We found that due to high transmissibility, neither Omicron BA.1 nor BA.2 could be contained by China's pre-Omicron NPI strategies which were successful prior to the emergence of the Omicron variants. However, increased intervention intensity, such as enhanced population mobility restrictions and multi-round mass testing, could lead to containment success. We estimated that an acute Omicron epidemic wave in mainland China would result in significant number of deaths if China were to reopen under current vaccine coverage with no antiviral uptake, while increasing vaccination coverage and antiviral uptake could substantially reduce the disease burden. CONCLUSIONS: As China's current vaccination has yet to reach high coverage in older populations, NPIs remain essential tools to maintain low levels of infection while building up protective population immunity, ensuring a smooth transition out of the pandemic phase while minimizing the overall disease burden.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Aged , SARS-CoV-2/genetics , Feasibility Studies , COVID-19/epidemiology , COVID-19/prevention & control , China/epidemiologyABSTRACT
Amid the ongoing global COVID-19 pandemic, limited literature exists on immune persistence after primary immunization and the immunogenic features of booster vaccines administered at different time intervals. Therefore, this study aimed to determine the immune attenuation of neutralizing antibodies against the SARS-CoV-2 wild-type strain, and Delta and Omicron variants 12 months after the primary administration of the COVID-19 inactivated vaccine and evaluate the immune response after a booster administration at different time intervals. A total of 514 individuals were followed up after primary immunization and were vaccinated with a booster. Neutralizing antibodies against the wild-type strain and Delta and Omicron variant spike proteins were measured using pseudovirus neutralization assays. The geometric mean titers (GMTs) after the primary and booster immunizations were 12.09 and 61.48 for the wild-type strain, 11.67 and 40.33 for the Delta variant, and 8.51 and 29.31 for the Omicron variant, respectively. The GMTs against the wild-type strain declined gradually during the 12 months after the primary immunization, and were lower against the two variants. After implementing a booster immunization with a 6 month interval, the GMTs against the wild-type strain were higher than those obtained beyond the 7 month interval; however, the GMTs against the two variants were not statistically different across 3-12 month intervals. Overall, SARS-CoV-2 variants showed remarkable declines in immune persistence, especially against the Omicron variant. The booster administration interval could be shortened to 3 months in endemic areas of the Omicron variant, whereas an appropriate prolonging of the booster administration interval did not affect the booster immunization effect.
ABSTRACT
To estimate the effect of the corona virus disease 2019 (COVID-19) control measures taken to mitigate community transmission in many regions, we analyzed data from the influenza surveillance system in Beijing from week 27 of 2014 to week 26 of 2020. We collected weekly numbers of influenza-like illness (ILI) cases, weekly positive proportion of ILI cases, weekly ILI case proportion in outpatients, and the dates of implementation of COVID-19 measures. We compared the influenza activity indicators of the 2019/2020 season with the preceding five seasons and built two ARIMAX models to estimate the effectiveness of COVID-19 measures declared since January 24, 2020 by the emergency response. Based on the observed data, compared to the preceding five influenza seasons, ILIs, positive proportion of ILIs, and duration of the influenza epidemic period in 2019/2020 had increased from 13% to 54%; in particular, the number of weeks from the peak to the end of the influenza epidemic period had decreased from 12 to 1. According to ARIMAX model forecasting, after considering natural decline, weekly ILIs had decreased by 48.6%, weekly positive proportion had dropped by 15% in the second week after the emergency response was declared, and COVID-19 measures had reduced by 83%. We conclude that the public health emergency response can significantly interrupt the transmission of influenza.
Subject(s)
COVID-19 , Influenza, Human , Virus Diseases , Beijing/epidemiology , COVID-19/epidemiology , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Public Health , SeasonsABSTRACT
At present, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread worldwide, which has emerged multiple variants and brought a threat to global public health. To analyze the genomic characteristics and variations of SARS-CoV-2 imported into Beijing, we collected the respiratory tract specimens of 112 cases of coronavirus disease 2019 (COVID-19) from January to September 2021 in Beijing, China, including 40 local cases and 72 imported cases. The whole-genome sequences of the viruses were sequenced by the next-generation sequencing method. Variant markers and phylogenic features of SARS-CoV-2 were analyzed. Our results showed that in all 112 sequences, the mutations were concentrated in spike protein. D614G was found in all sequences, and mutations including L452R, T478K, P681R/H, and D950N in some cases. Furthermore, 112 sequences belonged to 23 lineages by phylogenetic analysis. B.1.1.7 (Alpha) and B.1.617.2 (Delta) lineages were dominant. Our study drew a variation image of SARS-CoV-2 and could help evaluate the potential risk of COVID-19 for pandemic preparedness and response.
ABSTRACT
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has lasted for two years and caused millions of infections and deaths in humans. Although the origin of SARS-CoV-2 infection in humans remains unknown, infection in animals has been frequently reported in varieties of animals all over the world. Both experimental and natural infections of SARS-CoV-2 in different animal species provide useful information on viral host range and pathogenicity. As the pandemic continues to evolve, SARS-CoV-2 infection in animals will be expanding. In this review, we summarized SARS-CoV-2 testing and infection in animals as well as SARS-CoV-2 strains and transmission in animals. Current data showed that at least 18 different animal species tested positive for SARS-CoV-2. These 18 animal species belong to pet, captive, farmed, and wild animals. Fifteen of the eighteen animal species were known to be positive for the Delta variant and ten animal species were infected with two different types of variants. Human-to-animal, animal-to-animal, and animal-to-human transmission events were suggested in different outbreaks involved in animal infection with SARS-CoV-2. Continued testing, immunization, and surveillance are warranted.
Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19 Testing , Humans , PandemicsABSTRACT
Introduction: Vibrio parahaemolyticus (V. parahaemolyticus) is a common foodborne pathogen which causes gastroenteritis in humans, especially the O3:K6 pandemic clone which is still a prominent serotype in Beijing, China. In this study, we observed a novel serotype O10:K4 isolated from clinical diarrhea cases, which became the most prevalent clone in 2021. Methods: 73 clinical isolates were collected through sentinel hospitals' surveillance in 2021. Serum agglutination testing and antimicrobial susceptibility testing were conducted. Whole genome sequencing was applied to characterize 73 V. parahaemolyticus strains and complete phylogenetic analysis. Results: Seven serotypes were identified among 73 strains. O10:K4 was the most common serotype (83.6%), followed by O2:KUT, O4:KUT, and O1:KUT. Multilocus sequence typing divided the 73 isolates into 10 sequence types (STs) with ST3 as the most prevalent, which covered all O10:K4 strains. Most isolates were sensitive to common antimicrobial agents apart from colistin. All the O10:K4 isolates were positive for the thermostable direct hemolysin gene, toxRS/new, andorf8, and negative for the TDH-related hemolysin gene. The whole genome sequencing-single nucleotide polymorphism phylogenetic analysis revealed O10:K4 strains formed a main genetic lineage, which was genetically distinct from other serotypes. We also demonstrated the presence of two type III secretion system genes (T3SS1 and T3SS2) and ß lactamase resistance gene blaCARB-22 in all O10:K4 strains. Conclusions: The study confirmed the emergence of V. parahaemolyticus O10:K4 possessing virulence factors similar to the O3:K6 pandemic clone, which may have enabled them to become prevalent in Beijing, China.
ABSTRACT
Omicron (B.1.1.529), the fifth variant of concern (VOC) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was firstly identified in November 2021 in South Africa. Omicron contains far more genome mutations than any other VOCs ever found, raising significant concerns about its increased transmissibility and immune evasion. Here, we report the importation of the Omicron variant into Beijing, China, in December 2021. Full-length genome sequences of five imported strains were obtained, with their genetic features characterized. Each strain contained 57 to 61 nucleotide substitutions, 39 deletions, and 9 insertions in the genome. Thirty to thirty-two amino acid changes were found in the spike proteins of the five strains. The phylogenetic tree constructed by the maximum likelihood method showed that all five imported genomes belonged to Omicron (BA.1) (alias of B.1.1.529.1), which is leading to the current surge of coronavirus disease 2019 (COVID-19) cases worldwide. The globally increased COVID-19 cases driven by the Omicron variant pose a significant challenge to disease prevention and control in China. Continuous viral genetic surveillance and increased testing among international travellers are required to contain this highly contagious variant.
ABSTRACT
INTRODUCTION: Repeat positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) following COVID-19 initial viral clearance (re-positivity) poses a public health management challenge. The objective was to determine factors associated with neutralizing antibody (Nab) level and re-positivity among patients infected with a single strain SARS-CoV-2. METHODS: During a single strain SARS-CoV-2 cluster in Beijing, China, longitudinal individual clinical, virological, and immunological data were collected from 368 infections from June 13 to September 22, 2020. Factors associated with Nab level and re-positivity were analyzed using generalized estimating equations. RESULTS: A total of 353 (96%) SARS-CoV-2 infections had demographic, clinical, and laboratory data available. Among the 353 infections, 55 (15.5%) were re-positive, and blood draws were taken from 346 individuals (98.0%) during hospitalization and/or during the follow-up period. Symptoms were milder for the second-time admission for the re-positives, although 36.4% of re-positives presented with radiographic appearance of pneumonia manifestation. Compared to non-re-positive patients, NAb titers were lower among re-positives; NAb was positively associated with clinical severity. Samples from the lower respiratory tract manifested higher viral load than that from the upper respiratory tract. Multivariable analysis showed re-positivity was positively associated with being female [odd ratio (OR)=1.7, 95% confidence interval (CI) 1.1-2.8] and being aged <18 years (OR=5.2, 95% CI 1.5-18.1); having initially asymptomatic infection (OR=13.7, 95% CI 1.6-116.3); and negatively associated with a higher NAb level (OR=0.9, 95% CI 0.5-1.7). CONCLUSIONS: NAb may be important for sustained viral clearance. Lower respiratory tract infection was associated with higher viral load among all infections when compared to upper respiratory tract infection. Continuous lower respiratory and intermittent upper respiratory viral shedding among COVID-19 infections may occur.
ABSTRACT
OBJECTIVES: The aim of the study was to reconstruct the complete transmission chain of the COVID-19 outbreak in Beijing's Xinfadi Market using data from epidemiological investigations, which contributes to reflecting transmission dynamics and transmission risk factors. METHODS: We set up a transmission model, and the model parameters are estimated from the survey data via Markov chain Monte Carlo sampling. Bayesian data augmentation approaches are used to account for uncertainty in the source of infection, unobserved onset, and infection dates. RESULTS: The rate of transmission of COVID-19 within households is 9.2%. Older people are more susceptible to infection. The accuracy of our reconstructed transmission chain was 67.26%. In the gathering place of this outbreak, the Beef and Mutton Trading Hall of Xinfadi market, most of the transmission occurs within 20 m, only 19.61% of the transmission occurs over a wider area (>20 m), with an overall average transmission distance of 13.00 m. The deepest transmission generation is 9. In this outbreak, there were 2 abnormally high transmission events. CONCLUSIONS: The statistical method of reconstruction of transmission trees from incomplete epidemic data provides a valuable tool to help understand the complex transmission factors and provides a practical guideline for investigating the characteristics of the development of epidemics and the formulation of control measures.
Subject(s)
COVID-19 , Epidemics , Aged , Animals , Bayes Theorem , Beijing/epidemiology , COVID-19/epidemiology , Cattle , China/epidemiology , Disease Outbreaks , Humans , SARS-CoV-2ABSTRACT
Virus infection has been consistently threatening public health. The cyclic GMP-AMP synthase (cGAS)-Stimulator of Interferon Genes (STING) pathway is a critical defender to sense various pathogens and trigger innate immunity of mammalian cells. cGAS recognizes the pathogenic DNA in the cytosol and then synthesizes 2'3'-cyclic GMP-AMP (2'3'cGAMP). As the second messenger, cGAMP activates STING and induces the following cascade to produce type I interferon (IFN-I) to protect against infections. However, viruses have evolved numerous strategies to hinder the cGAS-STING signal transduction, promoting their immune evasion. Here we outline the current status of the viral evasion mechanism underlying the regulation of the cGAS-STING pathway, focusing on how post-transcriptional modifications, viral proteins, and non-coding RNAs involve innate immunity during viral infection, attempting to inspire new targets discovery and uncover potential clinical antiviral treatments.
ABSTRACT
BACKGROUND: A local coronavirus disease 2019 (COVID-19) case confirmed on June 11, 2020 triggered an outbreak in Beijing, China after 56 consecutive days without a newly confirmed case. Non-pharmaceutical interventions (NPIs) were used to contain the source in Xinfadi (XFD) market. To rapidly control the outbreak, both traditional and newly introduced NPIs including large-scale management of high-risk populations and expanded severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) PCR-based screening in the general population were conducted in Beijing. We aimed to assess the effectiveness of the response to the COVID-19 outbreak in Beijing's XFD market and inform future response efforts of resurgence across regions. METHODS: A modified susceptible-exposed-infectious-recovered (SEIR) model was developed and applied to evaluate a range of different scenarios from the public health perspective. Two outcomes were measured: magnitude of transmission (i.e., number of cases in the outbreak) and endpoint of transmission (i.e., date of containment). The outcomes of scenario evaluations were presented relative to the reality case (i.e., 368 cases in 34 days) with 95% Confidence Interval (CI). RESULTS: Our results indicated that a 3 to 14 day delay in the identification of XFD as the infection source and initiation of NPIs would have caused a 3 to 28-fold increase in total case number (31-77 day delay in containment). A failure to implement the quarantine scheme employed in the XFD outbreak for defined key population would have caused a fivefold greater number of cases (73 day delay in containment). Similarly, failure to implement the quarantine plan executed in the XFD outbreak for close contacts would have caused twofold greater transmission (44 day delay in containment). Finally, failure to implement expanded nucleic acid screening in the general population would have yielded 1.6-fold greater transmission and a 32 day delay to containment. CONCLUSIONS: This study informs new evidence that in form the selection of NPI to use as countermeasures in response to a COVID-19 outbreak and optimal timing of their implementation. The evidence provided by this study should inform responses to future outbreaks of COVID-19 and future infectious disease outbreak preparedness efforts in China and elsewhere.
Subject(s)
COVID-19/epidemiology , Beijing/epidemiology , COVID-19/transmission , COVID-19 Testing , China/epidemiology , Epidemiological Monitoring , Humans , Models, Statistical , Pandemics , Quarantine , SARS-CoV-2/isolation & purificationABSTRACT
A surge in the number of international arrivals awaiting coronavirus disease 2019 (COVID-19) screening overwhelmed health-care workers and depleted medical resources in designated hospitals in Beijing, China in March 2020. The People's Government of Beijing Municipality therefore issued a policy which required the mandatory transfer of all asymptomatic passengers arriving from a foreign country to designated quarantine hotels, and the transfer of passengers with fever or respiratory symptoms to designated hospitals. Xiaotangshan Designated Hospital, a severe acute respiratory syndrome hospital in 2003, was rapidly renovated and put into operation with the main tasks of screening and isolating symptomatic international arrivals at Beijing Capital International Airport, providing basic medical care for mild to moderate COVID-19-positive cases, and rapidly referring severe to critical COVID-19-positive cases to higher-level hospitals. During the month-long period of its operation, 2171 passengers were screened and 53 were confirmed as having COVID-19 (six severe to critical). We describe how the use of Xiaotangshan Designated Hospital in this way enabled the efficient grouping and assessment of passengers arriving from a foreign country, the provision of optimal patient care without compromising public safety and the prioritization of critically ill patients requiring life-saving treatment. The designated hospital is a successful example of the World Health Organization's recommendation to renovate existing medical infrastructures to improve the COVID-19 response capacity. The flexible design of Xiaotangshan Designated Hospital means that it can be repurposed and reopened at any time to respond to the changing pandemic conditions.
En mars 2020, la brusque hausse du nombre d'arrivées internationales en attente de dépistage de la maladie à coronavirus 2019 (COVID-19) a submergé les professionnels de la santé et épuisé les ressources médicales dans les hôpitaux de référence à Beijing, en Chine. Le gouvernement populaire de la municipalité de Beijing a réagi en ordonnant que tous les passagers asymptomatiques en provenance d'un pays étranger soient transférés vers des hôtels reconvertis en centres de quarantaine, et que ceux manifestant de la fièvre ou des symptômes respiratoires soient envoyés dans des hôpitaux de référence. L'hôpital de référence Xiaotangshan, construit en 2003 pour lutter contre le syndrome respiratoire aigu sévère, a rapidement été rénové et mis en service. Ses tâches principales: dépister et isoler les passagers internationaux symptomatiques débarquant au Beijing Capital International Airport, prodiguer les soins médicaux de base aux cas positifs de COVID-19 souffrant d'une forme légère à modérée, et adresser dès que possible les cas positifs de COVID-19 dans un état grave ou critique aux hôpitaux spécialisés. En l'espace d'un mois, 2171 passagers ont été testés et 53 se sont révélés positifs à la COVID-19 (6 étant dans un état grave ou critique). Nous décrivons la façon dont l'hôpital de référence Xiaotangshan a ainsi permis de regrouper et d'évaluer efficacement les arrivées en provenance de l'étranger, d'offrir une prise en charge optimale des patients sans compromettre la sécurité publique, et d'établir des priorités afin que les malades gravement atteints puissent bénéficier d'un traitement dans les plus brefs délais. Cet hôpital de référence est un exemple réussi de la mise en Åuvre de la recommandation formulée par l'Organisation mondiale de la Santé: rénover les infrastructures médicales existantes afin d'améliorer les capacités de lutte contre la COVID-19. Grâce à sa conception flexible, l'hôpital Xiaotangshan peut être réutilisé et rouvert à n'importe quel moment pour réagir à un contexte pandémique en perpétuelle évolution.
Un aumento del número de llegadas de vuelos internacionales en espera de la detección del coronavirus 2019 (COVID-19) sobrecargó al personal sanitario y agotó los recursos médicos en los hospitales designados de Pekín (China) en marzo de 2020. Por lo tanto, la policía del Gobierno Popular del municipio de Pekín se tuvo que hacer cargo del traslado obligatorio de todos los pasajeros asintomáticos que llegaran de un país extranjero a los hoteles de cuarentena designados, y el traslado de los pasajeros con fiebre o síntomas respiratorios a los hospitales designados. El hospital designado de Xiaotangshan, un hospital especializado en el síndrome respiratorio agudo severo en 2003, se rehabilitó rápidamente y se puso en funcionamiento con las tareas principales de examinar y aislar a los sintomáticos que llegaban al Aeropuerto Internacional de Pekín, proporcionando atención médica básica a los casos positivos de COVID-19 de leves a moderados, y derivando rápidamente los casos positivos de COVID-19 de graves a críticos a hospitales de nivel superior. Durante el mes que duró su funcionamiento, se examinó a 2.171 pasajeros y se confirmó que 53 tenían la COVID-19 (6 de ellos con intensidad de grave a crítica). Describimos cómo el uso del hospital designado de Xiaotangshan permitió agrupar y evaluar eficazmente a los pasajeros que llegaban de un país extranjero, prestar una atención óptima a los pacientes sin comprometer la seguridad pública y priorizar a los pacientes en estado crítico que requerían tratamiento para salvar su vida. El hospital designado es un ejemplo de éxito de la recomendación de la Organización Mundial de la Salud de renovar las infraestructuras médicas existentes para mejorar la capacidad de respuesta ante la COVID-19. El diseño flexible del hospital designado de Xiaotangshan significa que puede utilizarse y volver a habilitarse en cualquier momento para responder a las condiciones cambiantes de la pandemia.