Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Add filters

Document Type
Year range
Chinese Journal of Disease Control and Prevention ; 25(4):405-410, 2021.
Article in Chinese | Scopus | ID: covidwho-1566854


Objective To explore the lag effect of daily average temperature on the incidence of coronavirus disease 2019 (COVID-19) in Hunan Province and to provide scientific evidences for effective prevention of COVID-19.  Methods  The meteorological factors, the air quality factors and the data conincidence of COVID-19 reported in Hunan Province during January 21, 2020 to March 2, 2020 were collected. Spearman correlation and distributed lag non-linear model analysis were performed.  Results  A total of 1 018 COVID-19 cases were reported in Hunan Province. The distribution lag non-linear model results showed that the influence of daily average temperature on the incidence of COVID-19 presented a nonlinear relationship. The cumulative relative incidence risk of COVID-19 decreased with the increase of daily average temperature, and the lowest temperature risk of the patients was 0 ℃. Both cold temperature and hot temperature increased incidence risk of COVID-19. It was indicated that the hot effects were immediate, however, the cold effects with obvious lag effect persisted up to 12 days. The highest relative risk of COVID-19 incidence was associated with lag 8-day daily average temperature of -5 ℃(RR=2.20, 95% CI=1.16-4.19). The influence of high temperature(10 ℃) was more significant than that of low temperature(6 ℃).  Conclusion  The daily average temperature, especially cold or hot temperature, was an important influencing factor of the incidence of COVID-19 in Hunan Province, which had lag influence on the incidence of COVID-19. We suggested that some related preventive measures should be adopted to protect vulnerable population and severe patients to reduce the incidence risk. © 2021, Publication Centre of Anhui Medical University. All rights reserved.