Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
2.
Lab Chip ; 22(8): 1531-1541, 2022 04 12.
Article in English | MEDLINE | ID: covidwho-1805669

ABSTRACT

Several virulent variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged along with the spread of this virus throughout the population. Some variants can exhibit increased transmissibility and reduced immune neutralization reactivity. These changes are deeply concerning issues that may hinder the ongoing effort of epidemic control measures, especially mass vaccination campaigns. The accurate discrimination of SARS-CoV-2 and its emerging variants is essential to contain the coronavirus disease 2019 pandemic. Herein, we report a low-cost, facile, and highly sensitive diagnostic platform that can simultaneously distinguish wild-type (WT) SARS-CoV-2 and its two mutations, namely, D614G and N501Y, within 2 h. WT or mutant (M) nucleic acid fragments at each allelic locus were selectively amplified by the tetra-primer amplification refractory mutation system (ARMS)-PCR assay. Allele-specific amplicons were simultaneously detected by two test lines on a quantum dot nanobead (QB)-based dual-color fluorescent test strip, which could be interpreted by the naked eye or by a home-made fluorescent strip readout device that was wirelessly connected to a smartphone for quantitative data analysis and result presentation. The WT and M viruses were indicated and were strictly discriminated by the presence of a green or red band on test line 1 for the D614G site and test line 2 for the N501Y site. The limits of detection (LODs) for the WT and M D614G were estimated as 78.91 and 33.53 copies per µL, respectively. This assay was also modified for the simultaneous detection of the N and ORF1ab genes of SARS-CoV-2 with LODs of 1.90 and 6.07 copies per µL, respectively. The proposed platform can provide a simple, accurate, and affordable diagnostic approach for the screening of SARS-CoV-2 and its variants of concern even in resource-limited settings.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Mutation , Nucleic Acid Amplification Techniques , Polymerase Chain Reaction , SARS-CoV-2/genetics
3.
RSC advances ; 12(6):3437-3444, 2022.
Article in English | EuropePMC | ID: covidwho-1787111

ABSTRACT

The outbreak of the coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in significant global health and economic threats to the human society. Thus, a rapid and accurate detection method for early testing and diagnosis should be established. In this study, a rapid water bath polymerase chain reaction (PCR) combined with lateral flow assay was developed to detect SARS-CoV-2 and influenza B virus simultaneously. A homemade automated transfer device equipped with reaction tube shuttled rapidly between two water baths at 98 °C and 53 °C to realize rapid PCR. After amplification, two-ended labeled PCR products were detected using the lateral flow strip with two test lines and streptavidin-conjugated quantum dot nanobeads. The fluorescence value was read using a handheld instrument. The established assay could complete reverse-transcription PCR amplification and lateral flow detection in 45 minutes. The detection limits were 8.44 copies per μL and 14.23 copies per μL for SARS-CoV-2 and influenza B virus, respectively. The coefficients of variation of the test strip were 10.10% for the SARS-CoV-2 and 4.94% for the influenza B virus, demonstrating the excellent repeatability of the experiment. These results indicated that the rapid PCR combined with lateral flow assay could detect SARS-CoV-2 and influenza B virus simultaneously at a short assay time and low cost, thereby showing the remarkable potential for the rapid and multiplex detection of respiratory viruses in resource-limited settings. Rapid and highly sensitive multiplex detection of SARS-CoV-2 and influenza B virus using water bath PCR-combined fluorescent lateral flow assay.

4.
RSC Adv ; 12(6): 3437-3444, 2022 Jan 24.
Article in English | MEDLINE | ID: covidwho-1655682

ABSTRACT

The outbreak of the coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in significant global health and economic threats to the human society. Thus, a rapid and accurate detection method for early testing and diagnosis should be established. In this study, a rapid water bath polymerase chain reaction (PCR) combined with lateral flow assay was developed to detect SARS-CoV-2 and influenza B virus simultaneously. A homemade automated transfer device equipped with reaction tube shuttled rapidly between two water baths at 98 °C and 53 °C to realize rapid PCR. After amplification, two-ended labeled PCR products were detected using the lateral flow strip with two test lines and streptavidin-conjugated quantum dot nanobeads. The fluorescence value was read using a handheld instrument. The established assay could complete reverse-transcription PCR amplification and lateral flow detection in 45 minutes. The detection limits were 8.44 copies per µL and 14.23 copies per µL for SARS-CoV-2 and influenza B virus, respectively. The coefficients of variation of the test strip were 10.10% for the SARS-CoV-2 and 4.94% for the influenza B virus, demonstrating the excellent repeatability of the experiment. These results indicated that the rapid PCR combined with lateral flow assay could detect SARS-CoV-2 and influenza B virus simultaneously at a short assay time and low cost, thereby showing the remarkable potential for the rapid and multiplex detection of respiratory viruses in resource-limited settings.

5.
J Control Release ; 340: 114-124, 2021 12 10.
Article in English | MEDLINE | ID: covidwho-1474707

ABSTRACT

The messenger RNA (mRNA)-based therapy, especially mRNA vaccines, has shown its superiorities in versatile design, rapid development and scale production, since the outbreak of coronavirus disease 2019 (COVID-19). Although the Pfizer-BioNTech and Moderna COVID-19 mRNA vaccines had been approved for application, unexpected adverse events were reported to be most likely associated with the mRNA delivery systems. Thus, the development of mRNA delivery system with good efficacy and safety remains a challenge. Here, for the first time, we report that the neutral cytidinyl lipid, 2-(4-amino-2-oxopyrimidin-1-yl)-N-(2,3-dioleoyl-oxypropyl) acetamide (DNCA), and the cationic lipid, dioleoyl-3,3'-disulfanediylbis-[2-(2,6-diaminohexanamido)] propanoate (CLD), could encapsulate and deliver the COVID-19 mRNA-1096 into the cytoplasm to induce robust adaptive immune response. In the formulation, the molar ratio of DNCA/CLD to a single nucleotide of COVID-19 mRNA-1096 was about 0.9: 0.5: 1 (the N/P ratio was about 7: 1). The DNCA/CLD-mRNA-1096 lipoplexes were rationally prepared by the combination of the lipids DNCA/CLD with the aqueous mRNA solution under mild sonication to stimulate multiple interactions, including H-bonding, π-stacking and electrostatic force between the lipids and the mRNA. After intramuscular applications of the DNCA/CLD-mRNA-1096 lipoplexes, robust neutralizing antibodies and long-lived Th1-biased SARS-CoV-2-specific cell immunity were detected in the immunized mice, thus suggesting the DNCA/CLD a promising mRNA delivery system. Moreover, our study might also inspire better ideas for developing mRNA delivery systems.


Subject(s)
COVID-19 , Animals , Humans , Lipids , Mice , RNA, Messenger , SARS-CoV-2
6.
J Med Virol ; 93(10): 5825-5832, 2021 10.
Article in English | MEDLINE | ID: covidwho-1432413

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has focused attention on the need to develop effective therapeutics against the causative pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and also against other pathogenic coronaviruses. In this study, we report on a kind of bisbenzylisoquinoline alkaloid, neferine, as a pan-coronavirus entry inhibitor. Neferine effectively protected HEK293/hACE2 and HuH7 cell lines from infection by different coronaviruses pseudovirus particles (SARS-CoV-2, SARS-CoV-2 [D614G, N501Y/D614G, 501Y.V1, 501Y.V2, 501Y.V3 variants], SARS-CoV, MERS-CoV) in vitro, with median effect concentration (EC50 ) of 0.13-0.41 µM. Neferine blocked host calcium channels, thus inhibiting Ca2+ -dependent membrane fusion and suppressing virus entry. This study provides experimental data to support the fact that neferine may be a promising lead for pan-coronaviruses therapeutic drug development.


Subject(s)
Antiviral Agents/pharmacology , Benzylisoquinolines/pharmacology , Calcium/metabolism , SARS-CoV-2/drug effects , Virus Internalization/drug effects , COVID-19/virology , Cell Line , Coronavirus/drug effects , Coronavirus/physiology , HEK293 Cells , Humans , Isoquinolines/pharmacology , Phenols/pharmacology , SARS-CoV-2/physiology
7.
J Control Release ; 338: 537-547, 2021 10 10.
Article in English | MEDLINE | ID: covidwho-1385845

ABSTRACT

mRNA-based therapy has been evaluated in preclinical and clinical studies for the treatment of a wide variety of disease such as cancer immunotherapies and infectious disease vaccines. However, it remains challenging to development safe and efficient delivery system. Here, we have designed a novel self-assembled polymeric micelle based on vitamin E succinate modified polyethyleneimine copolymer (PVES) to delivery mRNA. In vitro, PVES could transfect mRNA into multiple cell lines such as HEK-293T, HeLa and Vero and the transfection efficiencies were much higher than PEI 25 k. In addition, the cytotoxicity of PVES was much lower than PEI 25 k. Furthermore, mice administered intramuscularly with PVES/SARS-CoV-2 mRNA vaccine induced potent antibody response and show no obvious toxicity. These results demonstrated the potential of PVES as a safe and effective delivery carrier for mRNA.


Subject(s)
COVID-19 , Micelles , Animals , COVID-19 Vaccines , HeLa Cells , Humans , Mice , Polyethyleneimine , RNA, Messenger , SARS-CoV-2 , Transfection
8.
ACS Appl Mater Interfaces ; 13(34): 40342-40353, 2021 Sep 01.
Article in English | MEDLINE | ID: covidwho-1366784

ABSTRACT

Sensitive point-of-care methods for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens in clinical specimens are urgently needed to achieve rapid screening of viral infection. We developed a magnetic quantum dot-based dual-mode lateral flow immunoassay (LFIA) biosensor for the high-sensitivity simultaneous detection of SARS-CoV-2 spike (S) and nucleocapsid protein (NP) antigens, which is beneficial for improving the detection accuracy and efficiency of SARS-CoV-2 infection in the point-of-care testing area. A high-performance magnetic quantum dot with a triple-QD shell (MagTQD) nanotag was first fabricated and integrated into the LFIA system to provide superior fluorescence signals, enrichment ability, and detectability for S/NP antigen testing. Two detection modes were provided by the proposed MagTQD-LFIA. The direct mode was used for rapid screening or urgent detection of suspected samples within 10 min, and the enrichment mode was used for the highly sensitive and quantitative analysis of SARS-CoV-2 antigens in biological samples without the interference of the "hook effect." The simultaneous detection of SARS-CoV-2 S/NP antigens was conducted in one LFIA strip, and the detection limits for two antigens under direct and enrichment modes were 1 and 0.5 pg/mL, respectively. The MagTQD-LFIA showed high accuracy, specificity, and stability in saliva and nasal swab samples and is an efficient tool with flexibility to meet the testing requirements for SARS-CoV-2 antigens in various situations.


Subject(s)
Antigens, Viral/analysis , Biosensing Techniques/methods , Coronavirus Nucleocapsid Proteins/analysis , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/analysis , Antibodies, Immobilized/immunology , Antibodies, Monoclonal/immunology , Antigens, Viral/immunology , Coronavirus Nucleocapsid Proteins/immunology , Fluorescence , Fluorescent Dyes/chemistry , Humans , Immunoassay/methods , Limit of Detection , Magnetite Nanoparticles/chemistry , Nasopharynx/virology , Phosphoproteins/analysis , Phosphoproteins/immunology , Quantum Dots/chemistry , Saliva/virology , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/immunology
9.
Front Immunol ; 12: 700152, 2021.
Article in English | MEDLINE | ID: covidwho-1359189

ABSTRACT

Background: Mucosal-associated invariant T (MAIT) cells are considered to participate of the host immune response against acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection; however, single-cell transcriptomic profiling of MAIT cells in patients with COVID-19 remains unexplored. Methods: We performed single-cell RNA sequencing analyses on peripheral MAIT cells from 13 patients with COVID-19 and 5 healthy donors. The transcriptional profiles of MAIT cells, together with assembled T-cell receptor sequences, were analyzed. Flow cytometry analysis was also performed to investigate the properties of MAIT cells. Results: We identified that differentially expressed genes (DEGs) of MAIT cells were involved in myeloid leukocyte activation and lymphocyte activation in patients with COVID-19. In addition, in MAIT cells from severe cases, more DEGs were enriched in adaptive cellular and humoral immune responses compared with those in moderate cases. Further analysis indicated that the increase of cell cytotoxicity (killing), chemotaxis, and apoptosis levels in MAIT cells were consistent with disease severity and displayed the highest levels in patients with severe disease. Interestingly, flow cytometry analysis showed that the frequencies of pyroptotic MAIT cells, but not the frequencies of apoptotic MAIT cells, were increased significantly in patients with COVID-19, suggesting pyroptosis is one of leading causes of MAIT cell deaths during SARS-CoV-2 infection. Importantly, there were more clonal expansions of MAIT cells in severe cases than in moderate cases. Conclusions: The results of the present study suggest that MAIT cells are likely to be involved in the host immune response against SARS-CoV-2 infection. Simultaneously, the transcriptomic data from MAIT cells provides a deeper understanding of the immune pathogenesis of the disease.


Subject(s)
COVID-19/immunology , Mucosal-Associated Invariant T Cells/immunology , SARS-CoV-2/immunology , Transcriptome/genetics , Base Sequence , COVID-19/pathology , Gene Expression Profiling , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Humans , Lymphocyte Activation/genetics , Pyroptosis/physiology , Sequence Analysis, RNA , Severity of Illness Index , VDJ Exons/genetics
10.
Analyst ; 146(12): 3908-3917, 2021 Jun 14.
Article in English | MEDLINE | ID: covidwho-1319050

ABSTRACT

The pandemic outbreak of the 2019 coronavirus disease (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is still spreading rapidly and poses a great threat to human health. As such, developing rapid and accurate immunodiagnostic methods for the identification of infected persons is needed. Here, we proposed a simple but sensitive on-site testing method based on spike protein-conjugated quantum dot (QD) nanotag-integrated lateral flow immunoassay (LFA) to simultaneously detect SARS-CoV-2-specific IgM and IgG in human serum. Advanced silica-core@dual QD-shell nanocomposites (SiO2@DQD) with superior luminescence and stability were prepared to serve as fluorescent nanotags in the LFA strip and guarantee high sensitivity and reliability of the assay. The performance of the SiO2@DQD-strip was fully optimized and confirmed by using 10 positive serum samples from COVID-19 patients and 10 negative samples from patients with other respiratory diseases. The practical clinical value of the assay was further evaluated by testing 316 serum samples (114 positive and 202 negative samples). The overall detection sensitivity and specificity reached 97.37% (111/114) and 95.54% (193/202), respectively, indicating the huge potential of our proposed method for the rapid and accurate detection of SARS-CoV-2-infected persons and asymptomatic carriers.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Antibodies, Viral , Humans , Immunoassay , Immunoglobulin G , Immunoglobulin M , Reproducibility of Results , SARS-CoV-2 , Sensitivity and Specificity , Silicon Dioxide
11.
Sens Actuators B Chem ; 345: 130372, 2021 Oct 15.
Article in English | MEDLINE | ID: covidwho-1294238

ABSTRACT

Rapid and accurate diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (FluA) antigens in the early stages of virus infection is the key to control the epidemic spread. Here, we developed a two-channel fluorescent immunochromatographic assay (ICA) for ultrasensitive and simultaneous qualification of the two viruses in biological samples. A high-performance quantum dot nanobead (QB) was fabricated by adsorption of multilayers of dense quantum dots (QDs) onto the SiO2 surface and used as the highly luminescent label of the ICA system to ensure the high-sensitivity and stability of the assay. The combination of monodispersed SiO2 core (∼180 nm) and numerous carboxylated QDs formed a hierarchical shell, which ensured that the QBs possessed excellent stability, superior fluorescence signal, and convenient surface functionalization. The developed ICA biosensor achieved simultaneous detection of SARS-CoV-2 and FluA in one test within 15 min, with detection limits reaching 5 pg/mL for SARS-CoV-2 antigen and 50 pfu/mL for FluA H1N1. Moreover, our method showed high accuracy and specificity in throat swab samples with two orders of magnitude improvement in sensitivity compared with traditional AuNP-based ICA method. Hence, the proposed method is a promising and convenient tool for detection of respiratory viruses.

12.
J Virol Methods ; 295: 114221, 2021 09.
Article in English | MEDLINE | ID: covidwho-1284316

ABSTRACT

SARS-CoV-2 is the culprit causing Coronavirus Disease 2019 (COVID-19). For the study of SARS-CoV-2 infection in a BSL-2 laboratory, a SARS-CoV-2 pseudovirus particle (SARS2pp) production and infection system was constructed by using a lentiviral vector bearing dual-reporter genes eGFP and firefly luciferase (Luc2) for easy observation and analysis. Comparison of SARS2pp different production conditions revealed that the pseudovirus titer could be greatly improved by: 1) removing the last 19 amino acids of the spike protein and replacing the signal peptide with the mouse Igk signal sequence; 2) expressing the spike protein using CMV promoter other than CAG (a hybrid promoter consisting of a CMV enhancer, beta-actin promoter, splice donor, and a beta-globin splice acceptor); 3) screening better optimized spike protein sequences for SARS2pp production; and 4) adding 1 % BSA in the SARS2pp production medium. For infection, this SARS2pp system showed a good linear relationship between MOI 2-0.0002 and then was successfully used to evaluate SARS-CoV-2 infection inhibitors including recombinant human ACE2 proteins and SARS-CoV-2 neutralizing antibodies. The kidney, liver and small intestine-derived cell lines were also found to show different susceptibility to SARSpp and SARS2pp. Given its robustness and good performance, it is believed that this pseudovirus particle production and infection system will greatly promote future research for SARS-CoV-2 entry mechanisms and inhibitors and can be easily applied to study new emerging SARS-CoV-2 variants.


Subject(s)
Neutralization Tests/methods , SARS-CoV-2/physiology , Virus Internalization , Angiotensin-Converting Enzyme 2/pharmacology , Animals , Antibodies, Neutralizing/pharmacology , Antiviral Agents/pharmacology , Cell Line , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Lentivirus/genetics , Luciferases, Firefly/genetics , Luciferases, Firefly/metabolism , Recombinant Proteins/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virion , Virus Internalization/drug effects
13.
Analyst ; 146(12): 3908-3917, 2021 Jun 14.
Article in English | MEDLINE | ID: covidwho-1221232

ABSTRACT

The pandemic outbreak of the 2019 coronavirus disease (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is still spreading rapidly and poses a great threat to human health. As such, developing rapid and accurate immunodiagnostic methods for the identification of infected persons is needed. Here, we proposed a simple but sensitive on-site testing method based on spike protein-conjugated quantum dot (QD) nanotag-integrated lateral flow immunoassay (LFA) to simultaneously detect SARS-CoV-2-specific IgM and IgG in human serum. Advanced silica-core@dual QD-shell nanocomposites (SiO2@DQD) with superior luminescence and stability were prepared to serve as fluorescent nanotags in the LFA strip and guarantee high sensitivity and reliability of the assay. The performance of the SiO2@DQD-strip was fully optimized and confirmed by using 10 positive serum samples from COVID-19 patients and 10 negative samples from patients with other respiratory diseases. The practical clinical value of the assay was further evaluated by testing 316 serum samples (114 positive and 202 negative samples). The overall detection sensitivity and specificity reached 97.37% (111/114) and 95.54% (193/202), respectively, indicating the huge potential of our proposed method for the rapid and accurate detection of SARS-CoV-2-infected persons and asymptomatic carriers.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Antibodies, Viral , Humans , Immunoassay , Immunoglobulin G , Immunoglobulin M , Reproducibility of Results , SARS-CoV-2 , Sensitivity and Specificity , Silicon Dioxide
14.
Build Environ ; 196: 107788, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1128907

ABSTRACT

Although airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been recognized, the condition of ventilation for its occurrence is still being debated. We analyzed a coronavirus disease 2019 (COVID-19) outbreak involving three families in a restaurant in Guangzhou, China, assessed the possibility of airborne transmission, and characterized the associated environmental conditions. We collected epidemiological data, obtained a full video recording and seating records from the restaurant, and measured the dispersion of a warm tracer gas as a surrogate for exhaled droplets from the index case. Computer simulations were performed to simulate the spread of fine exhaled droplets. We compared the in-room location of subsequently infected cases and spread of the simulated virus-laden aerosol tracer. The ventilation rate was measured using the tracer gas concentration decay method. This outbreak involved ten infected persons in three families (A, B, C). All ten persons ate lunch at three neighboring tables at the same restaurant on January 24, 2020. None of the restaurant staff or the 68 patrons at the other 15 tables became infected. During this occasion, the measured ventilation rate was 0.9 L/s per person. No close contact or fomite contact was identified, aside from back-to-back sitting in some cases. Analysis of the airflow dynamics indicates that the infection distribution is consistent with a spread pattern representative of long-range transmission of exhaled virus-laden aerosols. Airborne transmission of the SARS-CoV-2 virus is possible in crowded space with a ventilation rate of 1 L/s per person.

15.
Anal Chem ; 92(23): 15542-15549, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-933643

ABSTRACT

A rapid and accurate method for detection of virus (SARS-CoV-2)-specific antibodies is important to contain the 2019 coronavirus disease (COVID-19) outbreak, which is still urgently needed. Here, we develop a colorimetric-fluorescent dual-mode lateral flow immunoassay (LFIA) biosensor for rapid, sensitive, and simultaneous detection of SARS-CoV-2-specific IgM and IgG in human serum using spike (S) protein-conjugated SiO2@Au@QD nanobeads (NBs) as labels. The assay only needs 1 µL of the serum sample, can be completed within 15 min, and is 100 times more sensitive than the colloidal gold-based LFIA. Two detection modes of our biosensor are available: the colorimetric mode for rapid screening of the patients with suspected SARS-CoV-2 infection without any special instrument and the fluorescent mode for sensitive and quantitative analyses to determine the concentrations of specific IgM/IgG in human serum and detect the infection early and precisely. We validated the proposed method using 16 positive serum samples from patients with COVID-19 and 41 negative samples from patients with other viral respiratory infections. The results demonstrated that combined detection of virus-specific IgM and IgG via SiO2@Au@QD LFIA can identify 100% of patients with SARS-CoV-2 infection with 100% specificity.


Subject(s)
Antibodies, Viral/blood , COVID-19/diagnosis , Immunoassay/methods , Immunoglobulin G/blood , Immunoglobulin M/blood , Quantum Dots/chemistry , SARS-CoV-2/immunology , COVID-19/virology , Gold/chemistry , Humans , Particle Size , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Sensitivity and Specificity , Silicon Dioxide/chemistry , Spike Glycoprotein, Coronavirus/chemistry
16.
Sens Actuators B Chem ; 329: 129196, 2021 Feb 15.
Article in English | MEDLINE | ID: covidwho-933487

ABSTRACT

The accurate and rapid screening of serum antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the key to control the spread of 2019 coronavirus disease (COVID-19). In this study, we reported a surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-LFIA) for the simultaneous detection of anti-SARS-CoV-2 IgM/IgG with high sensitivity. Novel SERS tags labeled with dual layers of Raman dye were fabricated by coating a complete Ag shell on SiO2 core (SiO2@Ag) and exhibited excellent SERS signals, good monodispersity, and high stability. Anti-human IgM and IgG were immobilized onto the two test lines of the strip to capture the formed SiO2@Ag-spike (S) protein-anti-SARS-CoV-2 IgM/IgG immunocomplexes. The SERS signal intensities of the IgM and IgG test zones were easily recorded by a portable Raman instrument and used for the high-sensitivity analysis of target IgM and IgG. The limit of detection of SERS-LFIA was 800 times higher than that of standard Au nanoparticle-based LFIA for target IgM and IgG. The SERS-LFIA biosensor was tested on 19 positive serum samples from COVID-19 patients and 49 negative serum samples from healthy people to demonstrate the clinical feasibility of our proposed assay. The results revealed that the proposed method exhibited high accuracy and specificity for patients with SARS-CoV-2 infection.

SELECTION OF CITATIONS
SEARCH DETAIL