Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
BMC Medical Informatics & Decision Making ; 22(1):1-11, 2022.
Article in English | Academic Search Complete | ID: covidwho-1808363

ABSTRACT

Background: Venous thromboembolism (VTE) risk assessment in surgical patients is important for the appropriate diagnosis and treatment of patients. The commonly used Caprini model is limited by its inadequate ability to discriminate between risk stratums on the surgical population in southwest China and lengthy risk factors. The purpose of this study was to establish an improved VTE risk assessment model that is accurate and simple. Methods: This study is based on the clinical data from 81,505 surgical patients hospitalized in the Southwest Hospital of China between January 1, 2019 and June 18, 2021. Among the population, 559 patients developed VTE. An improved VTE risk assessment model, SW-model, was established through Logistic Regression, with comparisons to both Caprini and Random Forest. Results: The SW-model incorporated eight risk factors. The area under the curve (AUC) of SW-model (0.807 [0.758, 0.853], 0.804 [0.765, 0.840]), are significantly superior (p = 0.001 and p = 0.044) to those of the Caprini (0.705 [0.652, 0.757], 0.758 [0.719, 0795]) on two test sets, but inferior (p < 0.001 and p = 0.002) to Random Forest (0.854 [0.814, 0.890], 0.839 [0.806, 0.868]). In decision curve analysis, within threshold range from 0.015 to 0.04, the DCA curves of the SW-model are superior to Caprini and two default strategies. Conclusions: The SW-model demonstrated a higher discriminative capability to distinguish VTE positive in surgical patients compared with the Caprini model. Compared to Random Forest, Logistic Regression based SW-model provided interpretability which is essential in guarantee the procedure of risk assessment transparent to clinicians. [ FROM AUTHOR] Copyright of BMC Medical Informatics & Decision Making is the property of BioMed Central and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

2.
Journal of Computer Science and Technology ; 37(2):330-343, 2022.
Article in English | ProQuest Central | ID: covidwho-1803050

ABSTRACT

COVID-19 is a contagious infection that has severe effects on the global economy and our daily life. Accurate diagnosis of COVID-19 is of importance for consultants, patients, and radiologists. In this study, we use the deep learning network AlexNet as the backbone, and enhance it with the following two aspects: 1) adding batch normalization to help accelerate the training, reducing the internal covariance shift;2) replacing the fully connected layer in AlexNet with three classifiers: SNN, ELM, and RVFL. Therefore, we have three novel models from the deep COVID network (DC-Net) framework, which are named DC-Net-S, DC-Net-E, and DC-Net-R, respectively. After comparison, we find the proposed DC-Net-R achieves an average accuracy of 90.91% on a private dataset (available upon email request) comprising of 296 images while the specificity reaches 96.13%, and has the best performance among all three proposed classifiers. In addition, we show that our DC-Net-R also performs much better than other existing algorithms in the literature.

3.
Chinese Journal of Zoonoses ; 38(1):25-28, 2022.
Article in Chinese | CAB Abstracts | ID: covidwho-1789500

ABSTRACT

This study investigated the temperature sensitivity of severe fever with thrombocytopenia syndrome virus (SFTSV) to provide a basis for SFTSV disinfection and laboratory biosafety protection. We divided SFTSV cell culture supernatants into 250 L PCR vials at 100 L/tube, and placed them in a refrigerator at 4..C, and a metal bath at 25..C, 37..C, 39..C, 56..C, and 70..C. After treatment for predetermined periods of time, the viral titer was determined through indirect immunofluorescence in Vero cells. With increasing temperature, the rate of decline of the viral titer increased. After incubation at 4..C, 25..C, 37..C, and 39..C for 24 h, the titers decreased from 107.25/100 L to 107.00/100 L, 106.75/100 L, 106.50/100 L, and 105.00/100 L, respectively. At the same temperature, with prolonged storage time, the decrease in titer became more pronounced. After SFTSV was placed at 4..C, 25..C, 37..C for 72 h, the viral titer decreased from 107.25/100 L to 106.63/100 L, 106.50/100 L, and 103.38/100 L, respectively. SFTSV lost its infectivity after incubation at 39..C for 72 h. SFTSV was inactivated after exposure to 56..C for 180 min or 70..C for 5 min. We concluded that SFTSV is inactivated after incubation at 70..C for 5 min. However, after 3 days of exposure to 4..C and 25..C, the viral titer did not change significantly. Laboratories and medical staff should focus on personal protection and disinfection of items contaminated by SFTSV.

4.
SSRN; 2022.
Preprint in English | SSRN | ID: ppcovidwho-333130

ABSTRACT

Background: The epidemiological characteristics and transmissibility of Coronavirus Disease 2019 (COVID-19) may undergo changes due to the mutation of Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) strains. The purpose of this study is to compare the differences in the outbreaks of the different strains, with regards to aspects such as epidemiological characteristics, transmissibility, and difficulties in prevention and control. Methods: COVID-19 data from outbreaks of pre-Delta strains, the Delta variant and Omicron variant, were obtained from the Chinese Center for Disease Control and Prevention (CDC). Case data were collected from China’s direct-reporting system, and the data concerning outbreaks were collected by on-site epidemiological investigators and collated by the authors of this paper. Indicators such as the effective reproduction number (Reff), time-dependent reproduction number (Rt), rate of decrease in transmissibility (RDT), and duration from the illness onset date to the diagnosed date (DID) / reported date (DIR) were used to compare differences in transmissibility between pre-Delta strains, Delta variants and Omicron variants. A nonparametric test was used to compare differences in epidemiological characteristics and transmissibility between outbreaks of different strains. P < 0.05 indicated that the difference was statistically significant. Results: Mainland China has maintained a “dynamic zero-out strategy” since the first case was reported, and clusters of outbreaks have occurred intermittently. The strains causing outbreaks in mainland China have gone through three stages: the outbreak of pre-Delta strains, the outbreak of the Delta variant, and outbreaks involving the superposition of Delta and Omicron variant strains. Each outbreak of pre-Delta strains went through two stages: a rising stage and a falling stage;Each outbreak of the Delta variant and Omicron variant went through three stages: a rising stage, a platform stage and a falling stage. The maximum Reff value of Omicron variant outbreaks was highest (median: 6.7;ranged from 5.3 to 8.0) and the differences were statistically significant. The RDT value of outbreaks involving pre-Delta strains was smallest (median: 91.4%;[IQR]: 87.30%-94.27%), and the differences were statistically significant. The DID and DIR of all strains accounted for the most in 0 ~ 2 days, with more than 75%. The range of duration for outbreaks of pre-Delta strains was the largest (median: 20 days, ranging from 1 to 61 days), and the differences were statistically significant. Conclusion: With the evolution of the virus, the transmissibility of the variants has increased. The transmissibility of the Omicron variant is higher than that of both the pre-Delta strains and the Delta variant, and is more difficult to suppress. These findings enable us to get a more clear and precise picture of the transmissibility of the different variants in the real world, in accordance with the findings of previous studies. Reff is more suitable than Rt for assessing the transmissibility of the disease during an epidemic outbreak.

5.
Front Public Health ; 9: 689575, 2021.
Article in English | MEDLINE | ID: covidwho-1775810

ABSTRACT

Background: Human immunodeficiency virus (HIV) is a single-stranded RNA virus that can weaken the body's cellular and humoral immunity and is a serious disease without specific drug management and vaccine. This study aimed to evaluate the epidemiologic characteristics and transmissibility of HIV. Methods: Data on HIV follow-up were collected in Nanning City, Guangxi Zhuang Autonomous, China. An HIV transmission dynamics model was built to simulate the transmission of HIV and estimate its transmissibility by comparing the effective reproduction number (R eff ) at different stages: the rapid growth period from January 2001 to March 2005, slow growth period from April 2005 to April 2011, and the plateau from May 2011 to December 2019 of HIV in Nanning City. Results: High-risk areas of HIV prevalence in Nanning City were mainly concentrated in suburbs. Furthermore, high-risk groups were those of older age, with lower income, and lower education levels. The R eff in each stage (rapid growth, slow growth, and plateau) were 2.74, 1.62, and 1.15, respectively, which suggests the transmissibility of HIV in Nanning City has declined and prevention and control measures have achieved significant results. Conclusion: Over the past 20 years, the HIV incidence in Nanning has remained at a relatively high level, but its development trend has been curbed. Transmissibility was reduced from 2.74 to 1.15. Therefore, the prevention and treatment measures in Nanning City have achieved significant improvement.


Subject(s)
HIV Infections , Basic Reproduction Number , China/epidemiology , HIV , HIV Infections/epidemiology , Humans
6.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-329768

ABSTRACT

The current outbreak of novel coronavirus disease 2019 (COVID-19) is already causing a serious disease burden worldwide, this paper analyzed data of a delta variant Covid-19 outbreak in Hunan, China, and proposed an optimal dose-wise dynamical vaccinating process based on local contact pattern and vaccine coverage that minimize the accumulative cases in a certain future time interval. The optimized result requires an immediate vaccination to that none vaccinated at age group 30 to 39, which is coherent to the prevailing strategies. The dose-wise optimal vaccinating process can be directive for countries or regions where vaccines are not abundant. We recommend that vaccination should be further intensified to increase the coverage of booster shots, thus effectively reducing the spread of COVID-19.

7.
Acta Pharm Sin B ; 2022 Feb 28.
Article in English | MEDLINE | ID: covidwho-1712445

ABSTRACT

SARS-CoV-2 is an emerging viral pathogen and a major global public health challenge since December of 2019, with limited effective treatments throughout the pandemic. As part of the innate immune response to viral infection, type I interferons (IFN-I) trigger a signaling cascade that culminates in the activation of hundreds of genes, known as interferon stimulated genes (ISGs), that collectively foster an antiviral state. We report here the identification of a group of type I interferon suppressed genes, including fatty acid synthase (FASN), which are involved in lipid metabolism. Overexpression of FASN or the addition of its downstream product, palmitate, increased viral infection while knockout or knockdown of FASN reduced infection. More importantly, pharmacological inhibitors of FASN effectively blocked infections with a broad range of viruses, including SARS-CoV-2 and its variants of concern. Thus, our studies not only suggest that downregulation of metabolic genes may present an antiviral strategy by type I interferon, but they also introduce the potential for FASN inhibitors to have a therapeutic application in combating emerging infectious diseases such as COVID-19.

8.
BMC Microbiol ; 22(1): 42, 2022 02 03.
Article in English | MEDLINE | ID: covidwho-1690974

ABSTRACT

BACKGROUND: Quantitative point-of-care testing assay for detecting antibodies is critical to COVID-19 control. In this study, we established an up-conversion phosphor technology-based point-of-care testing (UPT-POCT), a lateral flow assay, for rapid COVID-19 diagnosis, as well as prediction of seral neutralizing antibody (NAb) activity and protective effects. METHODS: UPT-POCT was developed targeting total antibodies against the receptor-binding domain (RBD) of SARS-CoV-2 spike protein. Using ELISA as a contrast method, we evaluated the quantitation accuracy with NAb and serum samples. Cutoff for serum samples was determined through 70 healthy and 140 COVID-19 patients. We evaluated the cross-reactions with antibodies against other viruses. Then, we performed multi-center clinical trials of UPT-POCT, including 782 patients with 387 clinically confirmed COVID-19 cases. Furthermore, RBD-specific antibody levels were detected using UPT-POCT and microneutralization assay for samples from both patients and vaccinees. Specifically, the antibodies of recovered patients with recurrent positive (RP) reverse transcriptase-polymerase chain reaction test results were discussed. RESULTS: The ratios of signal intensities between the test and control bands on the lateral flow strip, namely, T/C ratios, was defined as the results of UPT-POCT. T/C ratios had excellent correlations with concentrations of NAb, as well as OD values of ELISA for serum samples. The sensitivity and specificity of UPT-POCT were 89.15% and 99.75% for 782 cases in seven hospitals in China, respectively. We evaluated RBD-specific antibodies for 528 seral samples from 213 recovered and 99 RP COVID-19 patients, along with 35 seral samples from inactivated SARS-CoV-2 vaccinees, and we discovered that the total RBD-specific antibody level indicated by T/C ratios of UPT-POCT was significantly related to the NAb titers in both COVID-19 patients (r = 0.9404, n = 527; ρ = 0.6836, n = 528) and the vaccinees (r = 0.9063, ρ = 0.7642, n = 35), and it was highly relevant to the protection rate against RP (r = 0.9886, n = 312). CONCLUSION: This study reveals that the UPT-POCT for quantitative detection of total RBD-specific antibody could be employed as a surrogate method for rapid COVID-19 diagnosis and prediction of protective effects.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , Point-of-Care Testing , SARS-CoV-2/isolation & purification , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/immunology , China , Cross Reactions , Humans , Immunoassay , Limit of Detection , SARS-CoV-2/immunology , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/immunology , Vaccination
9.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-328682

ABSTRACT

Evaluations of the pandemic to endemic phase are a great concern, especially in Zero-COVID-19 countries. Herein, we developed a mathematical model to simulate future scenarios for the variants of concern (VOCs) in the condition of several immune barriers and controlling measures. The results demonstrated that the Omicron variant would lead to 592.0 (mean ± standard deviation (SD): 433.9–750.0) million symptomatic, 24.3 (mean ± SD: 17.4–312.8) million hospital admission, 9.6 (mean ± SD:7.0–12.3) million ICU admission, and 5.4 (mean ± SD:3.7–7.5) million death cases after simulation with 1,000 days. At the endemic phase, there were nearly 500 death cases per day attributed to reinfection (66% [range: 62–70%]), infection from birth (18% [range: 16–21%]), and infection from migration (16% [range: 14–17%]). Actively treating more than 80% of cases could effectively reduce disease severity and death rates. It is feasible to transmit pandemic to endemic with Omicron variant and other milder VOCs. We recommend that the successful transition strategy is to improve medical resource allocation and enhance the prevention and control capabilities of health agencies.

10.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327486

ABSTRACT

Constantly emerging SARS-CoV-2 variants, such as Omicron BA.1, BA.1.1 and BA.2, pose a severe challenge to COVID-19 control 1–10 . Broad-spectrum antibody therapeutics and vaccines are needed for defending against future SARS-CoV-2 variants and sarbecovirus pandemics 11–14 ;however, we have yet to gain a comprehensive understanding of the epitopes capable of inducing broad sarbecovirus neutralization. Here, we report the identification of 241 anti-RBD broad sarbecovirus neutralizing antibodies isolated from 44 SARS-CoV-2 vaccinated SARS convalescents. Neutralizing efficacy of these antibodies against D614G, SARS-CoV-1, Omicron variants (BA.1, BA.1.1, BA.2), RATG13 and Pangolin-GD is tested, and their binding capability to 21 sarbecovirus RBDs is measured. High-throughput yeast-display mutational screening was further applied to determine each antibody’s RBD escaping mutation profile, and unsupervised epitope clustering based on escaping mutation hotspots was performed 7,15–18 . A total of 6 clusters of broad sarbecovirus neutralizing antibodies with diverse breadth and epitopes were identified, namely Group E1 (S309 19 , BD55-3152 site), E3 (S2H97 20 site), F1 (CR3022 21 , S304 22 site), F2 (DH1047 23 , BD55-3500 site), F3 (ADG-2 24 , BD55-3372 site) and B’ (S2K146 25 site). Members of E1, F2 and F3 demonstrate the highest neutralization potency;yet, Omicron, especially BA.2, has evolved multiple mutations (G339D, N440K, T376A, D405N, R408S) to escape antibodies of these groups. Nevertheless, broad sarbecovirus neutralizing antibodies that survived Omicron would serve as favorable therapeutic candidates. Furthermore, structural analyses of selected drug candidates propose two non-competing antibody pairing strategies, E1-F2 and E1-F3, as broad-spectrum antibody cocktails. Together, our work provides a comprehensive epitope map of broad sarbecovirus neutralizing antibodies and offers critical instructions for designing broad-spectrum vaccines.

11.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-325265

ABSTRACT

Background: The optimal vaccination is an essential public health strategy to control the pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This study aims to simulate the optimal vaccination strategy to control the virus epidemic by developing an age-specific model based on the transmission of coronavirus disease 2019 (COVID-19) in Wuhan City, China.Methods: An age-specific mathematical model based on the data of COVID-19 cases in Wuhan City from December 2, 2019 to March 16, 2020 was developed, with two scenarios for controlling transmission and reducing severity to estimate the effectiveness of SARS-CoV-2 vaccination strategy.Findings: Before the lockdown of the Wuhan City, the highest transmissibility of SARS-CoV-2 was among 14-44 years old (effective reproduction number, Reff = 4·28), followed by 14-44 to 45-64 years old (Reff = 2·61), and 14-44 to ≥ 65 years old (Reff = 1·69). We found that the first priority for controlling transmission should be to vaccinate nearly 90% individuals of 14-44 years old, followed by 90% individuals of 45-64 years old. However, the optimal vaccination strategy for reducing severity defined individuals ≥ 65 years old in vaccination priority groups, followed by 14-44 years old groups.Interpretation: The scenario analyses suggested that the optimal vaccination strategy aimed at controlling the transmission of COVID-19 might be to vaccinate about 90% of 15-44 years old individuals;while for reducing severity, the vaccination priority should focus on the older population. Furthermore, we also presented evidence about the heterogeneity of age-specific transmission and vaccination in different areas.Funding Statement: Bill & Melinda Gates Foundation, and the Science and Technology Program of Fujian Province.Declaration of Interests: The authors declare no competing interests.

12.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-325244

ABSTRACT

Objective: Based on differences in populations and prevention and control measures, the spread of new coronary pneumonia in different countries and regions also differs. This study aimed to calculate the transmissibility of coronavirus disease 2019 (COVID-19), and to evaluate the effectiveness of countermeasures to control the disease in Jilin Province, China. Methods: : The data of reported COVID-19 cases were collected, including imported and local cases from Jilin Province as of March 14, 2019. A Susceptible–Exposed–Infectious–Asymptomatic–Recovered (SEIAR) model was developed to fit the data, and the effective reproduction number ( R eff ) was calculated at different stages in the province. Finally, the effectiveness of the countermeasures was assessed. Results: : A total of 97 COVID-19 infections were reported in Jilin Province, among which 45 were imported infections (including one asymptomatic infection) and 52 were local infections (including three asymptomatic infections). The model fit well with the reported data ( R 2 = 0.593, P < 0.001). The R eff of COVID-19 before and after February 1, 2020 was 1.64 and 0.05, respectively. Without the intervention taken on February 1, 2020, the predicted cases would reach a peak of 177,011 on October 22, 2020 (284 days from the first case). The projected number of cases until the end of the outbreak (on October 9, 2021) would be 17,129,367, with a total attack rate of 63.66%. Based on the comparison between the predicted incidence of the model and the actual incidence, the comprehensive intervention measures implemented in Jilin Province on February 1 reduced the incidence of cases by 99.99%. Therefore, according to the current measures and implementation efforts, Jilin Province can achieve good control of the virus’s spread. Conclusions: : COVID-19 has a moderate transmissibility in Jilin Province, China. The interventions implemented in the province had proved effective, increasing social distancing and a rapid response by the prevention and control system will help control the spread of the disease.

13.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-324963

ABSTRACT

Background: The Coronavirus Disease 2019 (COVID-19) has been demonstrated as the cause of pneumonia. Nevertheless, it has not been reported as the cause of acute myocarditis or fulminant myocarditis. Case Presentation: A 63-year-old male was admitted with pneumonia and cardiac symptoms. He was genetically confirmed as COVID-19 by testing sputum on the first day of admission. He also had an elevated troponin-I (Trop I) level and diffuse myocardial dyskinesia along with decreased left ventricular ejection fraction (LVEF) on echocardiography. The highest level of Interleukin 6 was 272.40pg/ml. Bedside chest radiograph had typical ground-glass changes of viral pneumonia. The laboratory test results of virus that can cause myocarditis are all negative. The patient conformed to the diagnostic criteria of Chinese expert consensus statement for fulminant myocarditis. After receiving antiviral therapy and mechanical life support, the Trop I reduced to 0.10 g/L, and Interleukin 6 was 7.63 pg/ml. Meanwhile the LVEF of the patient gradually recovered to 68%. Conclusion: COVID-19 patients may develop severe cardiac complications such as myocarditis and heart failure, and this is the first case of COVID-19 infection complicated with fulminant myocarditis. The mechanism of cardiac pathology caused by COVID-19 needs further study.

14.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-324421

ABSTRACT

Background: Control measures during the coronavirus disease 2019 (COVID-19) outbreak may have limited the spread of infectious diseases. This study aimed to analyse the impact of COVID-19 on the spread of hand, foot, and mouth disease (HFMD) in China. Methods: A mathematical model was established to fit the reported data of HFMD in six selected cities in mainland China from 2015 to 2020. The absolute difference (AD) and relative difference (RD) between the reported incidence in 2020, and simulated maximum, minimum, or median incidence of HFMD in 2015-2019 were calculated. Findings: The incidence and Reff of HFMD have decreased in six selected cities since the outbreak of COVID-19, and in the second half of 2020, the incidence and R eff of HFMD have rebounded. The results show that the total attack rate (TAR) in 2020 was lower than the maximum, minimum, and median TAR fitted in previous years in six selected cities (except Changsha city). For the maximum, median, minimum fitted TAR, the range of RD (%) is 42·20-99·20%, 36·35-98·41% 48·35-96·23% (except Changsha city) respectively. Interpretation: Based on the incidence data of six cities from 2015 to 2019, the SEIAR model demonstrated a significant effect on the incidence of HFMD. During the period of COVID-19, the incidence and R eff of HFMD decreased, the prevention and control measures taken during the period of COVID-19, such as school suspension, home quarantine, closing all kinds of leisure places, wearing masks, advocating frequent hand washing, etc., have not only effectively suppressed the spread of COVID-19 epidemic, but also have significantly contributed to the containment of HFMD transmission.Funding Statement: This study was partly supported by the Bill & Melinda Gates Foundation (INV-005834).Declaration of Interests: The authors declare no conflicts of interests.

15.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-323805

ABSTRACT

Background: Coronavirus disease 2019 is an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is highly transmissible. Early and rapid testing is necessary to effectively prevent and control the outbreak. Detection of SARS-CoV-2 antibodies with lateral flow immunoassay can achieve this goal. Antibody detection is especially effective for the detection of asymptomatic infection. Methods: In this study, SARS-CoV-2 nucleoprotein was expressed by E. coli and purified by affinity chromatography. We used the highly stable and sensitive selenium nanoparticle as the labeling probe coupled with the SARS-CoV-2 nucleoprotein to prepare a new SARS-CoV-2 antibody (IgM and IgG) detection kit. The sensitivity and specificity of the kit were verified by plasma of COVID-19 patients and health persons. Separate detection of IgM and IgG, such as in this assay, was performed in order to reduce mutual interference and improve the accuracy of the test results. Results: The SARS-CoV-2 nucleoprotein was purified on a nickel column, and the final purity was greater than 90%. The sensitivity of the kit was 94.74% and the specificity was 95.12% by 41 negative plasma samples and 19 positive plasma samples detection. Conclusions: The assay kit does not require any special device for reading the results and the readout is a simple color change that can be evaluated with the naked eye. This kit is suitable for rapid and real-time detection of the SARS-CoV-2 antibody.

16.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-323733

ABSTRACT

Background: To observe the impact of online internet training on the prevention and control of the novel coronavirus pneumonia, and to supply clinical evidence for an effective safety training model for emergent public safety situations. Methods A total of 2,080 medical technicians of the Third People’s Hospital of Yancheng, affiliated to Southeast University, were enrolled and divided into two groups based on the training mode (online vs. routine). They were evaluated based on the rate of excellence in five aspects: medical technicians’ prevention and control, patient management, disinfection, medical waste disposal, and hand hygiene. A questionnaire was used to check the theoretical knowledge of both groups of the prevention and control of the new coronavirus pneumonia. Results The online training group had a higher excellence rate for medical technicians’ prevention and control, patient management, disinfection, and medical waste disposal than the control group ( p  < 0.05). However, there was no statistically significant difference in hand hygiene assessment between the two groups. Based on the self-made questionnaire star-based survey, the online training group was more informed than the control group on the theoretical knowledge of the new coronavirus pneumonia. Conclusion Online training can effectively and safely improve the awareness regarding the infection-related knowledge and compliance of preventive measures. Thus, it should be implemented in hospitals to minimize the risk of cross-transmission among people.

17.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-318607

ABSTRACT

Public policy that acts on financing activity -- referred to here as “financial policy” -- can play an important role in supporting the green transition and recovery of the economy. This research studies the specific role of financial policy, the mechanism of support, and how financial policy can be coordinated with other public policies that encourage the green transition, particularly in the recovery period after the COVID-19 pandemic. The method we employ is a macroeconomic growth model with “directed technical change”, the natural environment, and financial features. It is found that (1) financial constraints are non-trivial in the economy and could delay the green transition if no additional policy is introduced. (2) Financial policy directionally supporting the green economic sector can facilitate the green transition and help stop the environmental degradation. (3) A financial policy can bring effects similar to some other policies in supporting the green transition. Compared with related policies, financial policy has certain advantages and disadvantages. There is a clear theoretical rationale to combine financial policy with other policies to save cost and improve the effect. (4) A green recovery after the COVID-19 shock can be realised with an appropriate mix of financial policy and other related policies. The post-pandemic period offers a window of opportunity to hasten the green transition. These findings not only justify the desirability of the currently popular “green financial policy”, show the way of policy conduction and coordination, but also reveal the special value of such policy after the COVID-19 if we want to accelerate the “green recovery”.

18.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-308345

ABSTRACT

Doxorubicin (DOX) is a well-known chemotherapeutic drug for most malgnencies including breast cancer and leukemia whilst the usage of DOX is limited owing to its cardiotoxicity. The present study analyzed the effects of crocin on doxorubicin’s cardiotoxic efect in rat myocardium and searched their mechanistic interaction in the pathogenesis of DOX-induced myocardial toxicity. Forty rats were divided into four groups;(a) control (received normal saline as a dose of 1 ml/kg by ip for 15 days), (b) Crocin (received crocin as a dose of 40 mg/kg/24h by ip for 15 days), (c) DOX (received DOX as a dose of 2 mg/kg/48h by ip in six injection, cumulative dose 12 mg/kg), and (d) DOX+Crocin (received DOX as a dose of 2 mg/kg/48h by ip in six injection and crocin as a dose of 40 mg/kg/24h ip for 15 days). According to the present study, DOX administration caused significant increases in lipid indices (triglyseride, low-dencity lipoproteins and very low-dencity lipoproteins) as well as cardiac markers (Creatine kinase-muscle/brain and Cardiac Troponin I). Morever, DOX caused significant increases in oxidative stress parameters (malondialdehyde and total oxidant status) as well as decreases in antioxidant defense systems (glutathione, superoxide dismutase, catalase and total antioxidant status). The present study also demonstrated that co-administration of crocin with DOX significantly ameliorated the lipid profile and biochemical parameters in rats receiving DOX. The results were supported by histopathological and immunohistochemical evaluations. Taken together, our results reveal that crocin might be a cardioprotective agent in DOX treated patients for cancer.

19.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-315496

ABSTRACT

Background: Novel coronavirus disease 2019 (COVID-19) causes an immense disease burden. Only drugs or vaccines can eliminate the virus. Methods: We adopted our age-specific transmission model by susceptible-exposed-infectious -critically ill-asymptomatic-removed (SEICAR) model. Effects of different drug types were simulated by changing transmission rate (β), critical case fatality rate (fc), and disease duration of each age group. Evaluation indexes were based on outbreak duration(OD), cumulative number of cases(CNC), total attack rate(TAR), peak date(PD), number of peak cases(NPC), and case fatality rate(f). Findings: When without intervention, changing in β and disease duration, as the age increased, OD decreased, TAR increased, PD advanced, CCN and NPC initially increased and then decreased, while f decreased first and then increased. When disease duration and β remained unchanged, changing fc did not affect the epidemic. All age groups had 40% shorter disease duration but unchanged fc, while β was reduced by 60%, which reduced TAR of group 1 (≤14 years) from 2·35% to 0·09%;f of group 4 (≥65 years) was reduced from 1·04% to 0·05%. Interpretation: Drugs had different age-dependent effects. If a drug can control the disease duration or β of all age groups, younger people would have the fastest transmission control and seniors will have the best improvement in disease severity. Funding: The Bill & Melinda Gates Foundation (INV-005834);the Science and Technology Program of Fujian Province (No: 2020Y0002), and the Xiamen New Coronavirus Prevention and Control Emergency Tackling Special Topic Program (No: 3502Z2020YJ03).Declaration of Interests: The authors declare no competing interests.

20.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-315495

ABSTRACT

Background: Novel coronavirus disease 2019 (COVID-19) has become a global pandemic. This study aims to explore the relationship between key natural and social factors and the transmission of COVID-19 in China. Methods This study collected the number of confirmed cases of COVID-19 in 21 provinces and cities in China as of February 28, 2020. Three provinces were included in the sample: Hainan, Guizhou, and Qinghai. The 18 cities included Shanghai, Tianjin and so on. Key natural factors comprised monthly average temperatures in the January and February 2020 and spatial location as determined by longitude and latitude. Social factors were population density, Gross Domestic Product (GDP), number of medical institutions and health practitioners;as well as the per capita values for GDP, medical institutions, and health practitioners. Excel was used to collate the data and draw the temporal and spatial distribution map of the prevalence rate (PR) and the proportion of local infection (PLI). The influencing factors were analyzed by SPSS 21.0 statistical software, and the relationship between the dependent and independent variables was simulated by 11 models. Finally, we choose the exponential model according to the value of R 2 and the applicability of the model. Results The temporal and spatial distribution of the PR varies across the 21 provinces and cities identified. The PR generally decreases with distance from Hubei, except in the case of Shenzhen City, where the converse is observed. The results of the exponential model simulation show that the monthly minimum, median, and maximum average temperatures in January and February, and the latitude and population density are significant and thus will affect the PLI. The corresponding values of R 2 are 0.297, 0.322, 0.349, 0.290, 0.314, 0.339, 0.344, and 0.301. The effects of other factors were not statistically significant. Conclusions Among the selected key natural and social factors, higher temperatures may decrease the transmission of COVID-19. From this analysis, it is evident that if the temperature decreases by 1℃, the average PLI increases by 0.01. Further, it was established that locations at more northern latitudes had a higher PLI, and population density showed an inverse relationship with PLI.

SELECTION OF CITATIONS
SEARCH DETAIL