Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
MedComm ; 3(2):e130, 2022.
Article in English | Wiley | ID: covidwho-1782644

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, particularly those with multiple mutations in receptor-binding domain (RBD), pose a critical challenge to the efficacy of coronavirus disease 2019 (COVID-19) vaccines and therapeutic neutralizing monoclonal antibodies (mAbs). Omicron sublineages BA.1, BA.2, BA.3, as well as the recent emergence of C.1.2, B.1.630, B.1.640.1, and B.1.640.2, have multiple mutations in RBD and may lead to severe neutralizing antibody evasion. It is urgent to evaluate the antigenic change of the above seven variants against mAbs and sera from guinea pigs immunized with variants of concern (VOCs) (Alpha, Beta, Gamma, Delta, Omicron) and variants of interest (VOIs) (Lambda, Mu) immunogens. Only seven out of the 24 mAbs showed no reduction in neutralizing activity against BA.1, BA.2, and BA.3. However, among these seven mAbs, the neutralization activity of XGv337 and XGv338 against C.1.2, B.1.630, B.1.640.1, and B.1.640.2 were decreased. Therefore, only five neutralizing mAbs showed no significant change against these seven variants. Using VOCs and VOIs as immunogens, we found that the antigenicity of variants could be divided into three clusters, and each cluster showed similar antigenicity to different immunogens. Among them, D614G, B.1.640.1, and B.1.630 formed a cluster, C.1.2 and B.1.640.2 formed a cluster, and BA.1, BA.2, and BA.3 formed a cluster.

2.
Brief Bioinform ; 2022 Mar 31.
Article in English | MEDLINE | ID: covidwho-1774343

ABSTRACT

Coronavirus disease 2019 pandemic continues globally with a growing number of infections, but there are currently no effective antibody drugs against the virus. In addition, 90% amino acid sequence identity between the S2 subunit of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and SARS-CoV S proteins attracts us to examine S2-targeted cross-neutralizing antibodies that are not yet well defined. We therefore immunized RenMab mice with the full-length S protein and constructed a high-throughput antibody discovery method based on single-cell sequencing technology to isolate SARS-CoV-2 S-targeted neutralizing antibodies and cross-neutralizing antibodies against the S2 region of SARS-CoV-2/SARS-CoV S. Diversity of antibody sequences in RenMab mice and consistency in B-cell immune responses between RenMab mice and humans enabled screening of fully human virus-neutralizing antibodies. From all the frequency >1 paired clonotypes obtained from single-cell V(D)J sequencing, 215 antibodies with binding affinities were identified and primarily bound S2. However, only two receptor-binding domain-targeted clonotypes had neutralizing activity against SARS-CoV-2. Moreover, 5' single-cell RNA sequencing indicated that these sorted splenic B cells are mainly plasmablasts, germinal center (GC)-dependent memory B-cells and GC B-cells. Among them, plasmablasts and GC-dependent memory B-cells were considered the most significant possibility of producing virus-specific antibodies. Altogether, using a high-throughput single cell-based antibody discovery approach, our study highlighted the challenges of developing S2-binding neutralizing antibodies against SARS-CoV-2 and provided a novel direction for the enrichment of antigen-specific B-cells.

3.
Cell ; 2022.
Article in English | ScienceDirect | ID: covidwho-1767964

ABSTRACT

Summary As the emerging variants of SARS-CoV-2 continue to drive the worldwide pandemic, there is a constant demand for vaccines that offer more effective and broad-spectrum protection. Here, we report a circular RNA (circRNA) vaccine that elicited potent neutralizing antibodies and T cell responses by expressing the trimeric RBD of the spike protein, providing robust protection against SARS-CoV-2 in both mice and rhesus macaques. Notably, the circRNA vaccine enabled higher and more durable antigen production than the 1mΨ-modified mRNA vaccine, and elicited a higher proportion of neutralizing antibodies and distinct Th1-skewed immune responses. Importantly, we found that the circRNARBD-Omicron vaccine induced effective neutralizing antibodies against the Omicron but not the Delta variant. In contrast, the circRNARBD-Delta vaccine protected against both Delta and Omicron or functioned as a booster after two doses of either native- or Delta-specific vaccination, making it a favorable choice against the current variants of concern (VOCs) of SARS-CoV-2.

4.
Journal of Medical Virology ; 94(5):i-i, 2022.
Article in English | Wiley | ID: covidwho-1750403

ABSTRACT

Front Cover Caption: The cover image is based on the Research Article Aggregation of high-frequency RBD mutations of SARS-CoV-2 with three VOCs did not cause significant antigenic drift by Tao Li et al., https://doi.org/10.1002/jmv.27596.

5.
Emerg Microbes Infect ; 11(1): 1024-1036, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1740712

ABSTRACT

SARS-CoV-2 has caused the COVID-19 pandemic. B.1.617 variants (including Kappa and Delta) have been transmitted rapidly in India. The transmissibility, pathogenicity, and neutralization characteristics of these variants have received considerable interest. In this study, 22 pseudotyped viruses were constructed for B.1.617 variants and their corresponding single amino acid mutations. B.1.617 variants did not exhibit significant enhanced infectivity in human cells, but mutations T478K and E484Q in the receptor binding domain led to enhanced infectivity in mouse ACE2-overexpressing cells. Furin activities were slightly increased against B.1.617 variants and cell-cell fusion after infection of B.1.617 variants were enhanced. Furthermore, B.1.617 variants escaped neutralization by several mAbs, mainly because of mutations L452R, T478K, and E484Q in the receptor binding domain. The neutralization activities of sera from convalescent patients, inactivated vaccine-immunized volunteers, adenovirus vaccine-immunized volunteers, and SARS-CoV-2 immunized animals against pseudotyped B.1.617 variants were reduced by approximately twofold, compared with the D614G variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Cell Fusion , Humans , Mice , Mutation , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Viral Tropism
6.
Eur J Med Chem ; 234: 114209, 2022 Apr 15.
Article in English | MEDLINE | ID: covidwho-1719653

ABSTRACT

Thirty-two clofazimine derivatives, of which twenty-two were new, were synthesized and evaluated for their antiviral effects against both rabies virus and pseudo-typed SARS-CoV-2, taking clofazimine (1) as the lead. Among them, compound 15f bearing 4-methoxy-2-pyridyl at the N5-position showed superior or comparable antiviral activities to lead 1, with the EC50 values of 1.45 µM and 14.6 µM and the SI values of 223 and 6.1, respectively. Compound 15f inhibited rabies and SARS-CoV-2 by targeting G or S protein to block membrane fusion, as well as binding to L protein or nsp13 to inhibit intracellular biosynthesis respectively, and thus synergistically exerted a broad-spectrum antiviral effect. The results provided useful scientific data for the development of clofazimine derivatives into a new class of broad-spectrum antiviral candidates.


Subject(s)
Antiviral Agents , COVID-19 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Clofazimine , Humans , SARS-CoV-2
8.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-308922

ABSTRACT

COVID-19 has spread worldwide. However, SARS-CoV-2 serological markers, which usually important indicators of disease progression, remains to be studied. To determine serological patterns during infection and their corresponding influencing factors, we conducted a cohort study including 115 patients with COVID-19 from 41 hospitals. The study included measuring IgM, IgG, and neutralizing antibodies (NAb) in serum, conducting epidemiological survey of the subjects, and retrieving clinical indicators from electronic medical records. We found NAb had the highest seroconversion rate (79.61%), followed by IgG (60.42%), and IgM (26.56%). Seroconversion rate peaked 20–40 d post-infection with NAb reaching 100%. The Geometric mean of NAb ID 50 is 201 (30 to 6271). The NAb titer was positively correlated with duration of infection (p = 0), IgM (p = 0.016), and IgG (p = 0). Compared with IgM or IgG, NAb has better diagnostic sensitivity and serological patterns are valuable for clinical diagnosis and disease monitoring.

9.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-325079

ABSTRACT

Ten emerging SARS-CoV-2 variants—B.1.1.298, B.1.1.7, B.1.351, P.1, P.2, B.1.429, B.1.525, B.1.526-1, B.1.526-2, B.1.1.318—and seven corresponding single amino acid mutations in the receptor-binding domain were examined using SARS-CoV-2 pseudovirus. The results indicate that the current SARS-CoV-2 variants do not increase infectivity among humans. The K417N/T, N501Y, or E484K-carrying variants exhibited increased abilities to infect to mouse ACE2-overexpressing cells. The activities of Furin, TMPRSS2, and cathepsin L were increased against most of the variants. RBD amino acid mutations comprising K417T/N, L452R, Y453F, S477N, E484K, and N501Y caused significant immune escape from 11 of 13 monoclonal antibodies. However, the resistance to neutralization by convalescent serum or vaccines was mainly caused by the E484K mutation, while the neutralization of E484K-carrying variants was decreased by 1.1–6.2-fold. The convalescent serum from B.1.1.7- and B.1.351-infected patients neutralized the variants themselves better than other SARS-CoV-2 variants.

10.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-324470

ABSTRACT

The spike (S) protein of SARS coronavirus 2 (SARS-CoV-2) is an ideal target for the development of specific vaccines or drugs. However, treatments targeting viruses with mutant S proteins that have recently emerged in many countries are limited. Cleavage of the S protein by host proteases is essential for viral infection. Here, we discovered two novel sites (CS-1 and CS-2) in the S protein for cleavage by the protease Cathepsin L (CTSL). Both sites are highly conserved among all SARS-CoV-2 variants of concern. Cryo-electron microscopy structural studies revealed that CTSL cleavage increases the dynamics of the receptor binding domain of S and induces novel conformations. In our pseudovirus (PsV) infection experiment, alteration of the cleavage site significantly reduced the infection efficiency, and CTSL inhibitors markedly inhibited infection with PsVs of both the wild-type and emerged SARS-CoV-2 variants. Furthermore, six highly efficient CTSL inhibitors were found to effectively inhibit live virus infection in human cells in vitro , and two of these were further confirmed to prevent live virus infection in human ACE2 transgenic mice in vivo . Our work suggested that the CTSL cleavage sites in SARS-CoV-2 S are emerging new but effective targets for the development of mutation-resistant vaccines and drugs.

11.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-323773

ABSTRACT

SARS-CoV-2 has caused the COVID-19 pandemic. Recently, B.1.617 variants have been transmitted rapidly in India. The transmissibility, pathogenicity, and neutralization characteristics of these variants have received considerable interest. In this study, 22 pseudotyped viruses were constructed for B.1.617 variants and their corresponding single amino acid mutations. B.1.617 variants did not exhibit significant enhanced infectivity in human cells, but mutations T478K and E484Q in the receptor binding domain led to enhanced infectivity in mouse ACE2-overexpressing cells. Furin activities were slightly increased against B.1.617 variants and cell–cell fusion after infection of B.1.617 variants was enhanced. Furthermore, B.1.617 variants escaped neutralization by several mAbs, mainly because of mutations L452R, T478K, and E484Q in the receptor binding domain. The neutralization activities of sera from convalescent patients, inactivated vaccine-immunized volunteers, adenovirus vaccine-immunized volunteers, and SARS-CoV-2 immunized animals against pseudotyped B.1.617 variants were reduced by approximately twofold, compared with the D614G variant.

12.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-323767

ABSTRACT

The SARS-CoV-2 variant VUI/202012/01 has been reported to spread unexpectedly fast in the United Kingdom. It is estimated that its transmissibility may increase by 70%. In this study, the top five variants circulating in the UK including D614G+L18F+A222V, D614G+A222V, D614G+S477N, VUI/202012/01 and D614G+69-70del+439K were analyzed for their infective and neutralizing characteristics. The pseudotyped viruses were constructed for the five variants and 12 single mutants composed those variants. We found that the VUI/202012/01 variant does enhance its infectivity due to the cumulative effect of multiple mutations including 69-70del and 144/145del mutations in NTD, A570D in RBD, and S982A in S2. Meanwhile, mutations N501Y, N439K and S477N in RBD can cause a significant decrease in the neutralization activity for some mAbs. Although VUI/202012/01 did not affect the neutralization effect of convalescent sera, it affected the neutralization activity of animal immunized sera by RBD protein or recombinant spike DNA to some extent.

13.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-317971

ABSTRACT

Jianhui Nie, Qianqian Li, and Jiajing Wu contributed equally to this work. Pseudotyped viruses are useful virological tools due to their safety and versatility. Based on a VSV pseudotyped virus production system, we developed a pseudotyped virus-based neutralization assay against SARS-CoV-2 in biosafety level 2 facilities. This protocol includes production, titration of the SARS-CoV-2 S pseudotyped virus and neutralization assay based on it. Various types of samples targeting virus attachment and entry could be evaluated for their potency, including serum samples derived from animals and humans, monoclonal antibodies, fusion inhibitors (peptides or small molecules). If the pseudotyped virus stock has been prepared in advance, it will take 2 days to get the potency data for the candidate samples. Experience of handling cells is needed before implementing this protocol.

14.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-312737

ABSTRACT

The SARS-CoV-2 virus has had a major impact on global human health. During the spread of SARS-CoV-2, weakened host immunity and the use of vaccines with low efficacy may result in the development of more virulent strains or strains with resistance to existing vaccines and antibodies. The prevalence of SARS-CoV-2 mutant strains differs among regions, and this variation may affect the effectiveness of vaccines. In this study, an epidemiological investigation of SARS-CoV-2 in Portugal was performed, and the VSV-ΔG-G* pseudovirus system was used to construct 12 S protein epidemic mutants, D614G, A222V+D614G, B.1.1.7, S477N+D614G, P1162R+D614G+A222V, D839Y+D614G, L176F+D614G, B.1.1.7+L216F, B.1.1.7+M740V, B.1.258, B.1.258+L1063F, and B.1.258+N751Y.The mutant pseudoviruses were used to infect four susceptible cell lines (i.e., Huh7, hACE2-293T, Vero, and LLC-MK2) and 14 cell lines overexpressing ACE2 from different species. Mutant strains did not show increased infectivity or cross-species transmission. Neutralization activity was evaluated using the newly constructed pseudoviruses, mouse serum, and 11 monoclonal antibodies. The neutralizing activity in immunized mouse serum was not significantly reduced for the mutant strains. Additionally, mutant strains in Portugal showed escape from 9 of 11 monoclonal antibodies. Neutralization resistance was mainly caused by the S477N, N439K, and N501Y mutations in the Spike receptor binding domain. These findings emphasize the importance of SARS-CoV-2 mutation tracking in different regions for epidemic prevention and control.

15.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327486

ABSTRACT

Constantly emerging SARS-CoV-2 variants, such as Omicron BA.1, BA.1.1 and BA.2, pose a severe challenge to COVID-19 control 1–10 . Broad-spectrum antibody therapeutics and vaccines are needed for defending against future SARS-CoV-2 variants and sarbecovirus pandemics 11–14 ;however, we have yet to gain a comprehensive understanding of the epitopes capable of inducing broad sarbecovirus neutralization. Here, we report the identification of 241 anti-RBD broad sarbecovirus neutralizing antibodies isolated from 44 SARS-CoV-2 vaccinated SARS convalescents. Neutralizing efficacy of these antibodies against D614G, SARS-CoV-1, Omicron variants (BA.1, BA.1.1, BA.2), RATG13 and Pangolin-GD is tested, and their binding capability to 21 sarbecovirus RBDs is measured. High-throughput yeast-display mutational screening was further applied to determine each antibody’s RBD escaping mutation profile, and unsupervised epitope clustering based on escaping mutation hotspots was performed 7,15–18 . A total of 6 clusters of broad sarbecovirus neutralizing antibodies with diverse breadth and epitopes were identified, namely Group E1 (S309 19 , BD55-3152 site), E3 (S2H97 20 site), F1 (CR3022 21 , S304 22 site), F2 (DH1047 23 , BD55-3500 site), F3 (ADG-2 24 , BD55-3372 site) and B’ (S2K146 25 site). Members of E1, F2 and F3 demonstrate the highest neutralization potency;yet, Omicron, especially BA.2, has evolved multiple mutations (G339D, N440K, T376A, D405N, R408S) to escape antibodies of these groups. Nevertheless, broad sarbecovirus neutralizing antibodies that survived Omicron would serve as favorable therapeutic candidates. Furthermore, structural analyses of selected drug candidates propose two non-competing antibody pairing strategies, E1-F2 and E1-F3, as broad-spectrum antibody cocktails. Together, our work provides a comprehensive epitope map of broad sarbecovirus neutralizing antibodies and offers critical instructions for designing broad-spectrum vaccines.

16.
Arch Virol ; 167(2): 459-470, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1653515

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a major impact on global human health. During the spread of SARS-CoV-2, weakened host immunity and the use of vaccines with low efficacy may result in the development of more-virulent strains or strains with resistance to existing vaccines and antibodies. The prevalence of SARS-CoV-2 mutant strains differs between regions, and this variation may have an impact on the effectiveness of vaccines. In this study, an epidemiological investigation of SARS-CoV-2 in Portugal was performed, and the VSV-ΔG-G* pseudovirus system was used to construct 12 spike protein epidemic mutants, D614G, A222V+D614G, B.1.1.7, S477N+D614G, P1162R+D614G+A222V, D839Y+D614G, L176F+D614G, B.1.1.7+L216F, B.1.1.7+M740V, B.1.258, B.1.258+L1063F, and B.1.258+N751Y. The mutant pseudoviruses were used to infect four susceptible cell lines (Huh7, hACE2-293T-293T, Vero, and LLC-MK2) and 14 cell lines overexpressing ACE2 from different species. Mutant strains did not show increased infectivity or cross-species transmission. Neutralization activity against these pseudoviruses was evaluated using mouse serum and 11 monoclonal antibodies. The neutralizing activity of immunized mouse serum was not significantly reduced with the mutant strains, but the mutant strains from Portugal could evade nine of the 11 monoclonal antibodies tested. Neutralization resistance was mainly caused by the mutations S477N, N439K, and N501Y in the spike-receptor binding domain. These findings emphasize the importance of SARS-CoV-2 mutation tracking in different regions for epidemic prevention and control.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Humans , Mice , Mutation , Portugal/epidemiology , Spike Glycoprotein, Coronavirus/genetics
17.
Nature ; 603(7903): 919-925, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1655591

ABSTRACT

Omicron (B.1.1.529), the most heavily mutated SARS-CoV-2 variant so far, is highly resistant to neutralizing antibodies, raising concerns about the effectiveness of antibody therapies and vaccines1,2. Here we examined whether sera from individuals who received two or three doses of inactivated SARS-CoV-2 vaccine could neutralize authentic Omicron. The seroconversion rates of neutralizing antibodies were 3.3% (2 out of 60) and 95% (57 out of 60) for individuals who had received 2 and 3 doses of vaccine, respectively. For recipients of three vaccine doses, the geometric mean neutralization antibody titre for Omicron was 16.5-fold lower than for the ancestral virus (254). We isolated 323 human monoclonal antibodies derived from memory B cells in triple vaccinees, half of which recognized the receptor-binding domain, and showed that a subset (24 out of 163) potently neutralized all SARS-CoV-2 variants of concern, including Omicron. Therapeutic treatments with representative broadly neutralizing monoclonal antibodies were highly protective against infection of mice with SARS-CoV-2 Beta (B.1.351) and Omicron. Atomic structures of the Omicron spike protein in complex with three classes of antibodies that were active against all five variants of concern defined the binding and neutralizing determinants and revealed a key antibody escape site, G446S, that confers greater resistance to a class of antibodies that bind on the right shoulder of the receptor-binding domain by altering local conformation at the binding interface. Our results rationalize the use of three-dose immunization regimens and suggest that the fundamental epitopes revealed by these broadly ultrapotent antibodies are rational targets for a universal sarbecovirus vaccine.


Subject(s)
Antineoplastic Agents, Immunological , COVID-19 , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Mice , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
18.
Signal Transduct Target Ther ; 7(1): 18, 2022 01 19.
Article in English | MEDLINE | ID: covidwho-1639142

ABSTRACT

Emerging SARS-CoV-2 variants are the most serious problem for COVID-19 prophylaxis and treatment. To determine whether the SARS-CoV-2 vaccine strain should be updated following variant emergence like seasonal flu vaccine, the changed degree on antigenicity of SARS-CoV-2 variants and H3N2 flu vaccine strains was compared. The neutralization activities of Alpha, Beta and Gamma variants' spike protein-immunized sera were analysed against the eight current epidemic variants and 20 possible variants combining the top 10 prevalent RBD mutations based on the Delta variant, which were constructed using pseudotyped viruses. Meanwhile, the neutralization activities of convalescent sera and current inactivated and recombinant protein vaccine-elicited sera were also examined against all possible Delta variants. Eight HA protein-expressing DNAs elicited-animal sera were also tested against eight pseudotyped viruses of H3N2 flu vaccine strains from 2011-2019. Our results indicate that the antigenicity changes of possible Delta variants were mostly within four folds, whereas the antigenicity changes among different H3N2 vaccine strains were approximately 10-100-fold. Structural analysis of the antigenic characterization of the SARS-CoV-2 and H3N2 mutations supports the neutralization results. This study indicates that the antigenicity changes of the current SARS-CoV-2 may not be sufficient to require replacement of the current vaccine strain.


Subject(s)
Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , COVID-19 Vaccines/metabolism , COVID-19/prevention & control , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Substitution , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , Binding Sites , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/chemistry , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Gene Expression , Humans , Immune Sera/chemistry , Influenza A Virus, H3N2 Subtype/chemistry , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza Vaccines/metabolism , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Models, Molecular , Mutation , Neutralization Tests , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , SARS-CoV-2/chemistry , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
19.
Cell Res ; 32(3): 269-287, 2022 03.
Article in English | MEDLINE | ID: covidwho-1634806

ABSTRACT

The emergence of SARS-CoV-2 variants and potentially other highly pathogenic sarbecoviruses in the future highlights the need for pan-sarbecovirus vaccines. Here, we discovered a new STING agonist, CF501, and found that CF501-adjuvanted RBD-Fc vaccine (CF501/RBD-Fc) elicited significantly stronger neutralizing antibody (nAb) and T cell responses than Alum- and cGAMP-adjuvanted RBD-Fc in mice. Vaccination of rabbits and rhesus macaques (nonhuman primates, NHPs) with CF501/RBD-Fc elicited exceptionally potent nAb responses against SARS-CoV-2 and its nine variants and 41 S-mutants, SARS-CoV and bat SARSr-CoVs. CF501/RBD-Fc-immunized hACE2-transgenic mice were almost completely protected against SARS-CoV-2 challenge, even 6 months after the initial immunization. NHPs immunized with a single dose of CF501/RBD-Fc produced high titers of nAbs. The immunized macaques also exhibited durable humoral and cellular immune responses and showed remarkably reduced viral load in the upper and lower airways upon SARS-CoV-2 challenge even at 108 days post the final immunization. Thus, CF501/RBD-Fc can be further developed as a novel pan-sarbecovirus vaccine to combat current and future outbreaks of sarbecovirus diseases.


Subject(s)
COVID-19 , Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Macaca mulatta , Mice , Rabbits , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , T-Lymphocytes
20.
J Med Virol ; 94(5): 2108-2125, 2022 05.
Article in English | MEDLINE | ID: covidwho-1627779

ABSTRACT

Variants of SARS-CoV-2 continue to emerge, posing great challenges in outbreak prevention and control. It is important to understand in advance the impact of possible variants of concern (VOCs) on infectivity and antigenicity. Here, we constructed one or more of the 15 high-frequency naturally occurring amino acid changes in the receptor-binding domain (RBD) of Alpha, Beta, and Gamma variants. A single mutant of A520S, V367F, and S494P in the above three VOCs enhanced infectivity in ACE2-overexpressing 293T cells of different species, LLC-MK2 and Vero cells. Aggregation of multiple RBD mutations significantly reduces the infectivity of the possible three VOCs. Regarding neutralization, it is noteworthy that E484K, N501Y, K417N, and N439K predispose to monoclonal antibodies (mAbs) protection failure in the 15 high-frequency mutations. Most importantly, almost all possible VOCs (single RBD mutation or aggregation of multiple mutations) showed no more than a fourfold decrease in neutralizing activity with convalescent sera, vaccine sera, and immune sera of guinea pigs with different immunogens, and no significant antigenic drift was formed. In conclusion, our pseudovirus results could reduce the concern that the aggregation of multiple high-frequency mutations in the RBD of the spike protein of the three VOCs would lead to severe antigenic drift, and this would provide value for vaccine development strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , COVID-19/therapy , Chlorocebus aethiops , Guinea Pigs , Humans , Immunization, Passive , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL