Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Lancet Diabetes Endocrinol ; 9(5): 293-303, 2021 05.
Article in English | MEDLINE | ID: covidwho-1531930

ABSTRACT

BACKGROUND: In patients with type 2 diabetes, hyperglycaemia is an independent risk factor for COVID-19-related mortality. Associations between pre-infection prescription for glucose-lowering drugs and COVID-19-related mortality in people with type 2 diabetes have been postulated but only investigated in small studies and limited to a few agents. We investigated whether there are associations between prescription of different classes of glucose-lowering drugs and risk of COVID-19-related mortality in people with type 2 diabetes. METHODS: This was a nationwide observational cohort study done with data from the National Diabetes Audit for people with type 2 diabetes and registered with a general practice in England since 2003. Cox regression was used to estimate the hazard ratio (HR) of COVID-19-related mortality in people prescribed each class of glucose-lowering drug, with covariate adjustment with a propensity score to address confounding by demographic, socioeconomic, and clinical factors. FINDINGS: Among the 2 851 465 people with type 2 diabetes included in our analyses, 13 479 (0·5%) COVID-19-related deaths occurred during the study period (Feb 16 to Aug 31, 2020), corresponding to a rate of 8·9 per 1000 person-years (95% CI 8·7-9·0). The adjusted HR associated with recorded versus no recorded prescription was 0·77 (95% CI 0·73-0·81) for metformin and 1·42 (1·35-1·49) for insulin. Adjusted HRs for prescription of other individual classes of glucose-lowering treatment were as follows: 0·75 (0·48-1·17) for meglitinides, 0·82 (0·74-0·91) for SGLT2 inhibitors, 0·94 (0·82-1·07) for thiazolidinediones, 0·94 (0·89-0·99) for sulfonylureas, 0·94 (0·83-1·07) for GLP-1 receptor agonists, 1·07 (1·01-1·13) for DPP-4 inhibitors, and 1·26 (0·76-2·09) for α-glucosidase inhibitors. INTERPRETATION: Our results provide evidence of associations between prescription of some glucose-lowering drugs and COVID-19-related mortality, although the differences in risk are small and these findings are likely to be due to confounding by indication, in view of the use of different drug classes at different stages of type 2 diabetes disease progression. In the context of the COVID-19 pandemic, there is no clear indication to change prescribing of glucose-lowering drugs in people with type 2 diabetes. FUNDING: None.


Subject(s)
COVID-19/mortality , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/adverse effects , Aged , COVID-19/complications , Cohort Studies , England , Female , Humans , Male , Middle Aged , Proportional Hazards Models
3.
Non-conventional in English | MEDLINE, Grey literature | ID: grc-750477

ABSTRACT

Strategies to develop therapeutics for SARS-CoV-2 infection may be informed by experimental identification of viral-host protein interactions in cellular assays and measurement of host response proteins in COVID-19 patients. Identification of genetic variants that influence the level or activity of these proteins in the host could enable rapid 'in silico' assessment in human genetic studies of their causal relevance as molecular targets for new or repurposed drugs to treat COVID-19. We integrated large-scale genomic and aptamer-based plasma proteomic data from 10,708 individuals to characterize the genetic architecture of 179 host proteins reported to interact with SARS-CoV-2 proteins or to participate in the host response to COVID-19. We identified 220 host DNA sequence variants acting in cis (MAF 0.01-49.9%) and explaining 0.3-70.9% of the variance of 97 of these proteins, including 45 with no previously known protein quantitative trait loci (pQTL) and 38 encoding current drug targets. Systematic characterization of pQTLs across the phenome identified protein-drug-disease links, evidence that putative viral interaction partners such as MARK3 affect immune response, and establish the first link between a recently reported variant for respiratory failure of COVID-19 patients at the ABO locus and hypercoagulation, i.e. maladaptive host response. Our results accelerate the evaluation and prioritization of new drug development programmes and repurposing of trials to prevent, treat or reduce adverse outcomes. Rapid sharing and dynamic and detailed interrogation of results is facilitated through an interactive webserver ( https://omicscience.org/apps/covidpgwas/ ).

5.
Nat Commun ; 11(1): 6397, 2020 12 16.
Article in English | MEDLINE | ID: covidwho-1023894

ABSTRACT

Understanding the genetic architecture of host proteins interacting with SARS-CoV-2 or mediating the maladaptive host response to COVID-19 can help to identify new or repurpose existing drugs targeting those proteins. We present a genetic discovery study of 179 such host proteins among 10,708 individuals using an aptamer-based technique. We identify 220 host DNA sequence variants acting in cis (MAF 0.01-49.9%) and explaining 0.3-70.9% of the variance of 97 of these proteins, including 45 with no previously known protein quantitative trait loci (pQTL) and 38 encoding current drug targets. Systematic characterization of pQTLs across the phenome identified protein-drug-disease links and evidence that putative viral interaction partners such as MARK3 affect immune response. Our results accelerate the evaluation and prioritization of new drug development programmes and repurposing of trials to prevent, treat or reduce adverse outcomes. Rapid sharing and detailed interrogation of results is facilitated through an interactive webserver ( https://omicscience.org/apps/covidpgwas/ ).


Subject(s)
COVID-19/genetics , COVID-19/virology , Host-Pathogen Interactions/genetics , Proteins/genetics , SARS-CoV-2/physiology , ABO Blood-Group System/metabolism , Aptamers, Peptide/blood , Aptamers, Peptide/metabolism , Blood Coagulation , Drug Delivery Systems , Female , Gene Expression Regulation , Host-Derived Cellular Factors/metabolism , Humans , Internet , Male , Middle Aged , Quantitative Trait Loci/genetics
6.
Glob Health Action ; 13(1): 1810415, 2020 12 31.
Article in English | MEDLINE | ID: covidwho-913066

ABSTRACT

At the time of writing, it is unclear how the COVID-19 pandemic will play out in rapidly urbanising regions of the world. In these regions, the realities of large overcrowded informal settlements, a high burden of infectious and non-communicable diseases, as well as malnutrition and precarity of livelihoods, have raised added concerns about the potential impact of the COVID-19 pandemic in these contexts. COVID-19 infection control measures have been shown to have some effects in slowing down the progress of the pandemic, effectively buying time to prepare the healthcare system. However, there has been less of a focus on the indirect impacts of these measures on health behaviours and the consequent health risks, particularly in the most vulnerable. In this current debate piece, focusing on two of the four risk factors that contribute to >80% of the NCD burden, we consider the possible ways that the restrictions put in place to control the pandemic, have the potential to impact on dietary and physical activity behaviours and their determinants. By considering mitigation responses implemented by governments in several LMIC cities, we identify key lessons that highlight the potential of economic, political, food and built environment sectors, mobilised during the pandemic, to retain health as a priority beyond the context of pandemic response. Such whole-of society approaches are feasible and necessary to support equitable healthy eating and active living required to address other epidemics and to lower the baseline need for healthcare in the long term.


Subject(s)
Communicable Disease Control/methods , Coronavirus Infections/epidemiology , Diet , Exercise , Pneumonia, Viral/epidemiology , Urban Population , Urbanization , Betacoronavirus , Built Environment , COVID-19 , Food Supply , Health Behavior , Humans , Pandemics , Risk Factors , SARS-CoV-2
7.
Lancet Diabetes Endocrinol ; 8(10): 823-833, 2020 10.
Article in English | MEDLINE | ID: covidwho-712031

ABSTRACT

BACKGROUND: Diabetes has been associated with increased COVID-19-related mortality, but the association between modifiable risk factors, including hyperglycaemia and obesity, and COVID-19-related mortality among people with diabetes is unclear. We assessed associations between risk factors and COVID-19-related mortality in people with type 1 and type 2 diabetes. METHODS: We did a population-based cohort study of people with diagnosed diabetes who were registered with a general practice in England. National population data on people with type 1 and type 2 diabetes collated by the National Diabetes Audit were linked to mortality records collated by the Office for National Statistics from Jan 2, 2017, to May 11, 2020. We identified the weekly number of deaths in people with type 1 and type 2 diabetes during the first 19 weeks of 2020 and calculated the percentage change from the mean number of deaths for the corresponding weeks in 2017, 2018, and 2019. The associations between risk factors (including sex, age, ethnicity, socioeconomic deprivation, HbA1c, renal impairment [from estimated glomerular filtration rate (eGFR)], BMI, tobacco smoking status, and cardiovascular comorbidities) and COVID-19-related mortality (defined as International Classification of Diseases, version 10, code U07.1 or U07.2 as a primary or secondary cause of death) between Feb 16 and May 11, 2020, were investigated by use of Cox proportional hazards models. FINDINGS: Weekly death registrations in the first 19 weeks of 2020 exceeded the corresponding 3-year weekly averages for 2017-19 by 672 (50·9%) in people with type 1 diabetes and 16 071 (64·3%) in people with type 2 diabetes. Between Feb 16 and May 11, 2020, among 264 390 people with type 1 diabetes and 2 874 020 people with type 2 diabetes, 1604 people with type 1 diabetes and 36 291 people with type 2 diabetes died from all causes. Of these total deaths, 464 in people with type 1 diabetes and 10 525 in people with type 2 diabetes were defined as COVID-19 related, of which 289 (62·3%) and 5833 (55·4%), respectively, occurred in people with a history of cardiovascular disease or with renal impairment (eGFR <60 mL/min per 1·73 m2). Male sex, older age, renal impairment, non-white ethnicity, socioeconomic deprivation, and previous stroke and heart failure were associated with increased COVID-19-related mortality in both type 1 and type 2 diabetes. Compared with people with an HbA1c of 48-53 mmol/mol (6·5-7·0%), people with an HbA1c of 86 mmol/mol (10·0%) or higher had increased COVID-19-related mortality (hazard ratio [HR] 2·23 [95% CI 1·50-3·30, p<0·0001] in type 1 diabetes and 1·61 [1·47-1·77, p<0·0001] in type 2 diabetes). In addition, in people with type 2 diabetes, COVID-19-related mortality was significantly higher in those with an HbA1c of 59 mmol/mol (7·6%) or higher than in those with an HbA1c of 48-53 mmol/mol (HR 1·22 [95% CI 1·15-1·30, p<0·0001] for 59-74 mmol/mol [7·6-8·9%] and 1·36 [1·24-1·50, p<0·0001] for 75-85 mmol/mol [9·0-9·9%]). The association between BMI and COVID-19-related mortality was U-shaped: in type 1 diabetes, compared with a BMI of 25·0-29·9 kg/m2, a BMI of less than 20·0 kg/m2 had an HR of 2·45 (95% CI 1·60-3·75, p<0·0001) and a BMI of 40·0 kg/m2 or higher had an HR of 2·33 (1·53-3·56, p<0·0001); the corresponding HRs for type 2 diabetes were 2·33 (2·11-2·56, p<0·0001) and 1·60 (1·47-1·75, p<0·0001). INTERPRETATION: Deaths in people with type 1 and type 2 diabetes rose sharply during the initial COVID-19 pandemic in England. Increased COVID-19-related mortality was associated not only with cardiovascular and renal complications of diabetes but, independently, also with glycaemic control and BMI. FUNDING: None.


Subject(s)
Betacoronavirus , Coronavirus Infections/mortality , Diabetes Mellitus, Type 1/mortality , Diabetes Mellitus, Type 2/mortality , Pneumonia, Viral/mortality , Population Surveillance , Adult , Aged , Aged, 80 and over , COVID-19 , Cohort Studies , Coronavirus Infections/diagnosis , Databases, Factual/trends , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 2/diagnosis , Female , Humans , Male , Middle Aged , Mortality/trends , National Health Programs/trends , Pandemics , Pneumonia, Viral/diagnosis , Population Surveillance/methods , Risk Factors , SARS-CoV-2 , Young Adult
8.
Lancet Diabetes Endocrinol ; 8(10): 813-822, 2020 10.
Article in English | MEDLINE | ID: covidwho-712030

ABSTRACT

BACKGROUND: Although diabetes has been associated with COVID-19-related mortality, the absolute and relative risks for type 1 and type 2 diabetes are unknown. We assessed the independent effects of diabetes status, by type, on in-hospital death in England in patients with COVID-19 during the period from March 1 to May 11, 2020. METHODS: We did a whole-population study assessing risks of in-hospital death with COVID-19 between March 1 and May 11, 2020. We included all individuals registered with a general practice in England who were alive on Feb 16, 2020. We used multivariable logistic regression to examine the effect of diabetes status, by type, on in-hospital death with COVID-19, adjusting for demographic factors and cardiovascular comorbidities. Because of the absence of data on total numbers of people infected with COVID-19 during the observation period, we calculated mortality rates for the population as a whole, rather than the population who were infected. FINDINGS: Of the 61 414 470 individuals who were alive and registered with a general practice on Feb 16, 2020, 263 830 (0·4%) had a recorded diagnosis of type 1 diabetes, 2 864 670 (4·7%) had a diagnosis of type 2 diabetes, 41 750 (0·1%) had other types of diabetes, and 58 244 220 (94·8%) had no diabetes. 23 698 in-hospital COVID-19-related deaths occurred during the study period. A third occurred in people with diabetes: 7434 (31·4%) in people with type 2 diabetes, 364 (1·5%) in those with type 1 diabetes, and 69 (0·3%) in people with other types of diabetes. Unadjusted mortality rates per 100 000 people over the 72-day period were 27 (95% CI 27-28) for those without diabetes, 138 (124-153) for those with type 1 diabetes, and 260 (254-265) for those with type 2 diabetes. Adjusted for age, sex, deprivation, ethnicity, and geographical region, compared with people without diabetes, the odds ratios (ORs) for in-hospital COVID-19-related death were 3·51 (95% CI 3·16-3·90) in people with type 1 diabetes and 2·03 (1·97-2·09) in people with type 2 diabetes. These effects were attenuated to ORs of 2·86 (2·58-3·18) for type 1 diabetes and 1·80 (1·75-1·86) for type 2 diabetes when also adjusted for previous hospital admissions with coronary heart disease, cerebrovascular disease, or heart failure. INTERPRETATION: The results of this nationwide analysis in England show that type 1 and type 2 diabetes were both independently associated with a significant increased odds of in-hospital death with COVID-19. FUNDING: None.


Subject(s)
Betacoronavirus , Coronavirus Infections/mortality , Diabetes Mellitus, Type 1/mortality , Diabetes Mellitus, Type 2/mortality , Hospital Mortality/trends , Pneumonia, Viral/mortality , Population Surveillance , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , Child , Child, Preschool , Comorbidity , Coronavirus Infections/diagnosis , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 2/diagnosis , England/epidemiology , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Mortality/trends , Pandemics , Pneumonia, Viral/diagnosis , Population Surveillance/methods , SARS-CoV-2 , Young Adult
9.
bioRxiv ; 2020 Jul 01.
Article in English | MEDLINE | ID: covidwho-636928

ABSTRACT

Strategies to develop therapeutics for SARS-CoV-2 infection may be informed by experimental identification of viral-host protein interactions in cellular assays and measurement of host response proteins in COVID-19 patients. Identification of genetic variants that influence the level or activity of these proteins in the host could enable rapid 'in silico' assessment in human genetic studies of their causal relevance as molecular targets for new or repurposed drugs to treat COVID-19. We integrated large-scale genomic and aptamer-based plasma proteomic data from 10,708 individuals to characterize the genetic architecture of 179 host proteins reported to interact with SARS-CoV-2 proteins or to participate in the host response to COVID-19. We identified 220 host DNA sequence variants acting in cis (MAF 0.01-49.9%) and explaining 0.3-70.9% of the variance of 97 of these proteins, including 45 with no previously known protein quantitative trait loci (pQTL) and 38 encoding current drug targets. Systematic characterization of pQTLs across the phenome identified protein-drug-disease links, evidence that putative viral interaction partners such as MARK3 affect immune response, and establish the first link between a recently reported variant for respiratory failure of COVID-19 patients at the ABO locus and hypercoagulation, i.e. maladaptive host response. Our results accelerate the evaluation and prioritization of new drug development programmes and repurposing of trials to prevent, treat or reduce adverse outcomes. Rapid sharing and dynamic and detailed interrogation of results is facilitated through an interactive webserver ( https://omicscience.org/apps/covidpgwas/ ).

SELECTION OF CITATIONS
SEARCH DETAIL
...