Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
PLoS Pathog ; 18(9): e1010802, 2022 09.
Article in English | MEDLINE | ID: covidwho-2021984

ABSTRACT

The impact of vaccination on SARS-CoV-2 infectiousness is not well understood. We compared longitudinal viral shedding dynamics in unvaccinated and fully vaccinated adults. SARS-CoV-2-infected adults were enrolled within 5 days of symptom onset and nasal specimens were self-collected daily for two weeks and intermittently for an additional two weeks. SARS-CoV-2 RNA load and infectious virus were analyzed relative to symptom onset stratified by vaccination status. We tested 1080 nasal specimens from 52 unvaccinated adults enrolled in the pre-Delta period and 32 fully vaccinated adults with predominantly Delta infections. While we observed no differences by vaccination status in maximum RNA levels, maximum infectious titers and the median duration of viral RNA shedding, the rate of decay from the maximum RNA load was faster among vaccinated; maximum infectious titers and maximum RNA levels were highly correlated. Furthermore, amongst participants with infectious virus, median duration of infectious virus detection was reduced from 7.5 days (IQR: 6.0-9.0) in unvaccinated participants to 6 days (IQR: 5.0-8.0) in those vaccinated (P = 0.02). Accordingly, the odds of shedding infectious virus from days 6 to 12 post-onset were lower among vaccinated participants than unvaccinated participants (OR 0.42 95% CI 0.19-0.89). These results indicate that vaccination had reduced the probability of shedding infectious virus after 5 days from symptom onset.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , COVID-19/prevention & control , Humans , Longitudinal Studies , RNA, Viral/genetics , Vaccination , Virus Shedding
2.
J Environ Qual ; 51(5): 1066-1082, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1966053

ABSTRACT

During the COVID-19 pandemic, wastewater surveillance was leveraged as a powerful tool for monitoring community-scale health. Further, the well-known persistence of some pharmaceuticals through wastewater treatment plants spurred concerns that increased usage of pharmaceuticals during the pandemic would increase the concentrations in wastewater treatment plant effluent. We collected weekly influent and effluent samples from May 2020 through May 2021 from two wastewater treatment plants in central Pennsylvania, the Penn State Water Reclamation Facility and the University Area Joint Authority, that provide effluent for beneficial reuse, including for irrigation. Samples were analyzed for severe acute respiratory syndrome coronavirus 2 (influent only), two over-the-counter medicines (acetaminophen and naproxen), five antibiotics (ampicillin, doxycycline, ofloxacin, sulfamethoxazole, and trimethoprim), two therapeutic agents (remdesivir and dexamethasone), and hydroxychloroquine. Although there were no correlations between pharmaceutical and virus concentration, remdesivir detection occurred when the number of hospitalized patients with COVID-19 increased, and dexamethasone detection co-occurred with the presence of patients with COVID-19 on ventilators. Additionally, Penn State decision-making regarding instruction modes explained the temporal variation of influent pharmaceutical concentrations, with detection occurring primarily when students were on campus. Risk quotients calculated for pharmaceuticals with known effective and lethal concentrations at which 50% of a population is affected for fish, daphnia, and algae were generally low in the effluent; however, some acute risks from sulfamethoxazole were high when students returned to campus. Remdesivir and dexamethasone persisted through the wastewater treatment plants, thereby introducing novel pharmaceuticals directly to soils and surface water. These results highlight connections between human health and water quality and further demonstrate the broad utility of wastewater surveillance.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Acetaminophen , Ampicillin , Animals , Anti-Bacterial Agents/analysis , Dexamethasone , Doxycycline , Environmental Monitoring/methods , Humans , Hydroxychloroquine , Naproxen , Ofloxacin , Pandemics , Pennsylvania , Pharmaceutical Preparations , Soil , Sulfamethoxazole , Trimethoprim , Waste Disposal, Fluid , Waste Water , Wastewater-Based Epidemiological Monitoring , Water Pollutants, Chemical/analysis
3.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-336938

ABSTRACT

The impact of vaccination on SARS-CoV-2 infectiousness is not well understood. We compared longitudinal viral shedding dynamics in unvaccinated and fully vaccinated adults. SARS-CoV-2-infected adults were enrolled within 5 days of symptom onset and nasal specimens were self-collected daily for two weeks and intermittently for an additional two weeks. SARS-CoV-2 RNA load and infectious virus were analyzed relative to symptom onset stratified by vaccination status. We tested 1080 nasal specimens from 52 unvaccinated adults enrolled in the pre-Delta period and 32 fully vaccinated adults with predominantly Delta infections. While we observed no differences by vaccination status in maximum RNA levels, maximum infectious titers and the median duration of viral RNA shedding, the rate of decay from the maximum RNA load was faster among vaccinated;maximum infectious titers and maximum RNA levels were highly correlated. Furthermore, amongst participants with infectious virus, median duration of infectious virus detection was reduced from 7.5 days (IQR: 6.0-9.0) in unvaccinated participants to 6 days (IQR: 5.0-8.0) in those vaccinated (P=0.02). Accordingly, the odds of shedding infectious virus from days 6 to 12 post-onset were lower among vaccinated participants than unvaccinated participants (OR 0.42 95% CI 0.19-0.89). These results indicate that vaccination had reduced the probability of shedding infectious virus after 5 days from symptom onset. Significance statement We present longitudinal data on the magnitude, duration and decay rate of viral RNA and the magnitude and duration of infectious virus in nasal specimens from vaccinated and unvaccinated participants. On average, vaccinated participants (infected with the highly transmissible Delta variant) showed a lower probability of having infectious virus after 5 days of symptoms compared to unvaccinated participants (infected with mostly pre-delta viral lineages), even though both groups had a similar magnitude of infectious virus at or near the peak. These data help improve our understanding of the duration of the infectious period when infection occurs following vaccination and serves as a reference for future studies of shedding dynamics following infections with novel variants of concern.

4.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327060

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection elicits an antibody response that targets several viral proteins including spike (S) and nucleocapsid (N);S is the major target of neutralizing antibodies. Here, we assess levels of anti-N binding antibodies and anti-S neutralizing antibodies in unvaccinated children compared with unvaccinated older adults following infection. Specifically, we examine neutralization and anti-N binding by sera collected up to 52 weeks following SARS-CoV-2 infection in children and compare these to a cohort of adults, including older adults, most of whom had mild infections that did not require hospitalization. Neutralizing antibody titers were lower in children than adults early after infection, but by 6 months titers were similar between age groups. The neutralizing activity of the children's sera decreased modestly from one to six months;a pattern that was not significantly different from that observed in adults. However, infection of children induced much lower levels of anti-N antibodies than in adults, and levels of these anti-N antibodies decreased more rapidly in children than in adults, including older adults. These results highlight age-related differences in the antibody responses to SARS-CoV-2 proteins and, as vaccines for children are introduced, may provide comparator data for the longevity of infection-elicited and vaccination-induced neutralizing antibody responses.

5.
Clin Infect Dis ; 73(7): 1805-1813, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1455252

ABSTRACT

BACKGROUND: The evidence base for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is nascent. We sought to characterize SARS-CoV-2 transmission within US households and estimate the household secondary infection rate (SIR) to inform strategies to reduce transmission. METHODS: We recruited patients with laboratory-confirmed SARS-CoV-2 infection and their household contacts in Utah and Wisconsin during 22 March 2020-25 April 2020. We interviewed patients and all household contacts to obtain demographics and medical histories. At the initial household visit, 14 days later, and when a household contact became newly symptomatic, we collected respiratory swabs from patients and household contacts for testing by SARS-CoV-2 real-time reverse-transcription polymerase chain reaction (rRT-PCR) and sera for SARS-CoV-2 antibodies testing by enzyme-linked immunosorbent assay (ELISA). We estimated SIR and odds ratios (ORs) to assess risk factors for secondary infection, defined by a positive rRT-PCR or ELISA test. RESULTS: Thirty-two (55%) of 58 households secondary infection among household contacts. The SIR was 29% (n = 55/188; 95% confidence interval [CI], 23%-36%) overall, 42% among children (aged <18 years) of the COVID-19 patient and 33% among spouses/partners. Household contacts to COVID-19 patients with immunocompromised conditions and household contacts who themselves had diabetes mellitus had increased odds of infection with ORs 15.9 (95% CI, 2.4-106.9) and 7.1 (95% CI: 1.2-42.5), respectively. CONCLUSIONS: We found substantial evidence of secondary infections among household contacts. People with COVID-19, particularly those with immunocompromising conditions or those with household contacts with diabetes, should take care to promptly self-isolate to prevent household transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Child , Contact Tracing , Family Characteristics , Humans , United States/epidemiology , Wisconsin
6.
J Infect Dis ; 224(5): 771-776, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1410005

ABSTRACT

We aimed to characterize presence of culturable virus in clinical specimens during acute illness, and antibody kinetics up to 6 months after symptom onset, among 14 early patients with coronavirus disease 2019 in the United States. We isolated viable severe acute respiratory syndrome coronavirus 2 from real-time reverse-transcription polymerase chain reaction-positive respiratory specimens collected during days 0-8 after onset, but not after. All 13 patients with 2 or more serum specimens developed anti-spike antibodies; 12 developed detectable neutralizing antibodies. We did not isolate virus after detection of neutralizing antibodies. Eight participants provided serum at 6 months after onset; all retained detectable anti-spike immunoglobulin G, and half had detectable neutralizing antibodies. Two participants reported not feeling fully recovered at 6 months.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Formation/immunology , COVID-19/immunology , Seroconversion/physiology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/blood , COVID-19/virology , Follow-Up Studies , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Spike Glycoprotein, Coronavirus/immunology , United States
9.
Public Health Rep ; 136(1): 88-96, 2021.
Article in English | MEDLINE | ID: covidwho-894953

ABSTRACT

OBJECTIVES: Widespread global transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing coronavirus disease 2019 (COVID-19), continues. Many questions remain about asymptomatic or atypical infections and transmission dynamics. We used comprehensive contact tracing of the first 2 confirmed patients in Illinois with COVID-19 and serologic SARS-CoV-2 antibody testing to determine whether contacts had evidence of undetected COVID-19. METHODS: Contacts were eligible for serologic follow-up if previously tested for COVID-19 during an initial investigation or had greater-risk exposures. Contacts completed a standardized questionnaire during the initial investigation. We classified exposure risk as high, medium, or low based on interactions with 2 index patients and use of personal protective equipment (PPE). Serologic testing used a SARS-CoV-2 spike enzyme-linked immunosorbent assay on serum specimens collected from participants approximately 6 weeks after initial exposure to either index patient. The 2 index patients provided serum specimens throughout their illness. We collected data on demographic, exposure, and epidemiologic characteristics. RESULTS: Of 347 contacts, 110 were eligible for serologic follow-up; 59 (17% of all contacts) enrolled. Of these, 53 (90%) were health care personnel and 6 (10%) were community contacts. Seventeen (29%) reported high-risk exposures, 15 (25%) medium-risk, and 27 (46%) low-risk. No participant had evidence of SARS-CoV-2 antibodies. The 2 index patients had antibodies detected at dilutions >1:6400 within 4 weeks after symptom onset. CONCLUSIONS: In serologic follow-up of the first 2 known patients in Illinois with COVID-19, we found no secondary transmission among tested contacts. Lack of seroconversion among these contacts adds to our understanding of conditions (ie, use of PPE) under which SARS-CoV-2 infections might not result in transmission and demonstrates that SARS-CoV-2 antibody testing is a useful tool to verify epidemiologic findings.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Contact Tracing/statistics & numerical data , Health Personnel/statistics & numerical data , Occupational Exposure/statistics & numerical data , COVID-19/immunology , Enzyme-Linked Immunosorbent Assay , Female , Humans , Illinois/epidemiology , Male , Pandemics , Personal Protective Equipment , Risk Assessment , SARS-CoV-2
10.
Emerg Infect Dis ; 26(7): 1571-1574, 2020 07.
Article in English | MEDLINE | ID: covidwho-610771

ABSTRACT

During March 2016-March 2019, a total of 200,936 suspected cases of Middle East respiratory syndrome coronavirus infection were identified in Saudi Arabia; infections were confirmed in 698 cases (0.3% [0.7/100,000 population per year]). Continued surveillance is necessary for early case detection and timely infection control response.


Subject(s)
Coronavirus Infections/epidemiology , Population Surveillance/methods , Adolescent , Adult , Aged , Child , Child, Preschool , Contact Tracing , Disease Outbreaks , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Middle East Respiratory Syndrome Coronavirus , Saudi Arabia/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL