Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
EBioMedicine ; 83: 104195, 2022 Aug 05.
Article in English | MEDLINE | ID: covidwho-1977201

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to the angiotensin-converting enzyme 2 (ACE2) receptor, a critical component of the kallikrein-kinin system. Its dysregulation may lead to increased vascular permeability and release of inflammatory chemokines. Interactions between the kallikrein-kinin and the coagulation system might further contribute to thromboembolic complications in COVID-19. METHODS: In this observational study, we measured plasma and tissue kallikrein hydrolytic activity, levels of kinin peptides, and myeloperoxidase (MPO)-DNA complexes as a biomarker for neutrophil extracellular traps (NETs), in bronchoalveolar lavage (BAL) fluid from patients with and without COVID-19. FINDINGS: In BAL fluid from patients with severe COVID-19 (n = 21, of which 19 were mechanically ventilated), we observed higher tissue kallikrein activity (18·2 pM [1·2-1535·0], median [range], n = 9 vs 3·8 [0·0-22·0], n = 11; p = 0·030), higher levels of the kinin peptide bradykinin-(1-5) (89·6 [0·0-2425·0], n = 21 vs 0·0 [0·0-374·0], n = 19, p = 0·001), and higher levels of MPO-DNA complexes (699·0 ng/mL [66·0-142621·0], n = 21 vs 70·5 [9·9-960·0], n = 19, p < 0·001) compared to patients without COVID-19. INTERPRETATION: Our observations support the hypothesis that dysregulation of the kallikrein-kinin system might occur in mechanically ventilated patients with severe pulmonary disease, which might help to explain the clinical presentation of patients with severe COVID-19 developing pulmonary oedema and thromboembolic complications. Therefore, targeting the kallikrein-kinin system should be further explored as a potential treatment option for patients with severe COVID-19. FUNDING: Research Foundation-Flanders (G0G4720N, 1843418N), KU Leuven COVID research fund.

2.
J Clin Med ; 11(10)2022 May 11.
Article in English | MEDLINE | ID: covidwho-1855681

ABSTRACT

We conducted a prospective single-center observational study to determine lung ultrasound reliability in assessing global lung aeration in 38 hospitalized patients with non-critical COVID-19. On admission, fixed chest CT scans using visual (CTv) and software-based (CTs) analyses along with lung ultrasound imaging protocols and scoring systems were applied. The primary endpoint was the correlation between global chest CTs score and global lung ultrasound score. The secondary endpoint was the association between radiographic features and clinical disease classification or laboratory indices of inflammation. Bland-Altman analysis between chest CT scores obtained visually (CTv) or using software (CTs) indicated that only 1 of the 38 paired measures was outside the 95% limits of agreement (-4 to +4 score). Global lung ultrasound score was highly and positively correlated with global software-based CTs score (r = 0.74, CI = 0.55-0.86; p < 0.0001). Significantly higher median CTs score (p = 0.01) and lung ultrasound score (p = 0.02) were found in severe compared to moderate COVID-19. Furthermore, we identified significantly lower (p < 0.05) lung ultrasound and CTs scores in those patients with a more severe clinical condition manifested by SpO2 < 92% and C-reactive protein > 58 mg/L. We concluded that lung ultrasound is a reliable bedside clinical tool to assess global lung aeration in hospitalized non-critical care patients with COVID-19 pneumonia.

3.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-323197

ABSTRACT

Epidemiological and clinical reports have indicated that the host immune response to SARS-CoV-2, more so than viral factors, determines COVID-19 disease severity. To elucidate the immunopathology underlying COVID-19 severity, cytokine and multiplex immune profiling was performed in mild-moderate and critically-ill COVID-19 patients. Hypercytokinemia in COVID-19 differed from the IFN-γ-driven cytokine storm in macrophage activation syndrome, and was more pronounced in critical versus mild-moderate COVID-19. Systems modelling of cytokine levels followed by deep-immune profiling showed that classical monocytes drive this hyper-inflammatory phenotype and that a reduction in T-lymphocytes correlates with disease severity, with CD8+ cells being disproportionately affected. Expression of antigen presenting machinery was reduced in critical disease, while also neutrophils contributed to disease severity and local tissue damage by amplifying hypercytokinemia and neutrophil extracellular trap formation. We suggest a myeloid-driven immunopathology, in which hyperactivated neutrophils and an ineffective adaptive immune system act as mediators of COVID-19 disease severity.

4.
JCI Insight ; 7(1)2022 01 11.
Article in English | MEDLINE | ID: covidwho-1523122

ABSTRACT

Neutrophils are recognized as important circulating effector cells in the pathophysiology of severe coronavirus disease 2019 (COVID-19). However, their role within the inflamed lungs is incompletely understood. Here, we collected bronchoalveolar lavage (BAL) fluids and parallel blood samples of critically ill COVID-19 patients requiring invasive mechanical ventilation and compared BAL fluid parameters with those of mechanically ventilated patients with influenza, as a non-COVID-19 viral pneumonia cohort. Compared with those of patients with influenza, BAL fluids of patients with COVID-19 contained increased numbers of hyperactivated degranulating neutrophils and elevated concentrations of the cytokines IL-1ß, IL-1RA, IL-17A, TNF-α, and G-CSF; the chemokines CCL7, CXCL1, CXCL8, CXCL11, and CXCL12α; and the protease inhibitors elafin, secretory leukocyte protease inhibitor, and tissue inhibitor of metalloproteinases 1. In contrast, α-1 antitrypsin levels and net proteolytic activity were comparable in COVID-19 and influenza BAL fluids. During antibiotic treatment for bacterial coinfections, increased BAL fluid levels of several activating and chemotactic factors for monocytes, lymphocytes, and NK cells were detected in patients with COVID-19 whereas concentrations tended to decrease in patients with influenza, highlighting the persistent immunological response to coinfections in COVID-19. Finally, the high proteolytic activity in COVID-19 lungs suggests considering protease inhibitors as a treatment option.


Subject(s)
Bacterial Infections , Bronchoalveolar Lavage Fluid , COVID-19 , Coinfection , Influenza, Human , Adult , Aged , Bacterial Infections/complications , Bacterial Infections/immunology , Bacterial Infections/metabolism , Bacterial Infections/pathology , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , COVID-19/complications , COVID-19/diagnosis , COVID-19/immunology , COVID-19/pathology , Coinfection/immunology , Coinfection/metabolism , Coinfection/pathology , Cytokines/analysis , Female , Humans , Inflammation , Influenza, Human/complications , Influenza, Human/diagnosis , Influenza, Human/immunology , Influenza, Human/pathology , Lung/immunology , Lung/metabolism , Lung/pathology , Male , Middle Aged
5.
Clin Transl Immunology ; 10(4): e1271, 2021.
Article in English | MEDLINE | ID: covidwho-1525427

ABSTRACT

OBJECTIVES: Emerging evidence of dysregulation of the myeloid cell compartment urges investigations on neutrophil characteristics in coronavirus disease 2019 (COVID-19). We isolated neutrophils from the blood of COVID-19 patients receiving general ward care and from patients hospitalised at intensive care units (ICUs) to explore the kinetics of circulating neutrophils and factors important for neutrophil migration and activation. METHODS: Multicolour flow cytometry was exploited for the analysis of neutrophil differentiation and activation markers. Multiplex and ELISA technologies were used for the quantification of protease, protease inhibitor, chemokine and cytokine concentrations in plasma. Neutrophil polarisation responses were evaluated microscopically. Gelatinolytic and metalloproteinase activity in plasma was determined using a fluorogenic substrate. Co-culturing healthy donor neutrophils with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) allowed us to investigate viral replication in neutrophils. RESULTS: Upon ICU admission, patients displayed high plasma concentrations of granulocyte-colony-stimulating factor (G-CSF) and the chemokine CXCL8, accompanied by emergency myelopoiesis as illustrated by high levels of circulating CD10-, immature neutrophils with reduced CXCR2 and C5aR expression. Neutrophil elastase and non-metalloproteinase-derived gelatinolytic activity were increased in plasma from ICU patients. Significantly higher levels of circulating tissue inhibitor of metalloproteinase 1 (TIMP-1) in patients at ICU admission yielded decreased total MMP proteolytic activity in blood. COVID-19 neutrophils were hyper-responsive to CXCL8 and CXCL12 in shape change assays. Finally, SARS-CoV-2 failed to replicate inside human neutrophils. CONCLUSION: Our study provides detailed insights into the kinetics of neutrophil phenotype and function in severe COVID-19 patients, and supports the concept of an increased neutrophil activation state in the circulation.

6.
Nat Commun ; 12(1): 6243, 2021 10 29.
Article in English | MEDLINE | ID: covidwho-1493101

ABSTRACT

Understanding the pathology of COVID-19 is a global research priority. Early evidence suggests that the respiratory microbiome may be playing a role in disease progression, yet current studies report contradictory results. Here, we examine potential confounders in COVID-19 respiratory microbiome studies by analyzing the upper (n = 58) and lower (n = 35) respiratory tract microbiome in well-phenotyped COVID-19 patients and controls combining microbiome sequencing, viral load determination, and immunoprofiling. We find that time in the intensive care unit and type of oxygen support, as well as associated treatments such as antibiotic usage, explain the most variation within the upper respiratory tract microbiome, while SARS-CoV-2 viral load has a reduced impact. Specifically, mechanical ventilation is linked to altered community structure and significant shifts in oral taxa previously associated with COVID-19. Single-cell transcriptomics of the lower respiratory tract of COVID-19 patients identifies specific oral bacteria in physical association with proinflammatory immune cells, which show higher levels of inflammatory markers. Overall, our findings suggest confounders are driving contradictory results in current COVID-19 microbiome studies and careful attention needs to be paid to ICU stay and type of oxygen support, as bacteria favored in these conditions may contribute to the inflammatory phenotypes observed in severe COVID-19 patients.


Subject(s)
COVID-19/microbiology , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/physiology , Humans , Microbiota/physiology , SARS-CoV-2/pathogenicity , Transcriptome/genetics
9.
Nat Genet ; 53(4): 435-444, 2021 04.
Article in English | MEDLINE | ID: covidwho-1123140

ABSTRACT

The ongoing COVID-19 pandemic has caused a global economic and health crisis. To identify host factors essential for coronavirus infection, we performed genome-wide functional genetic screens with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human coronavirus 229E. These screens uncovered virus-specific as well as shared host factors, including TMEM41B and PI3K type 3. We discovered that SARS-CoV-2 requires the lysosomal protein TMEM106B to infect human cell lines and primary lung cells. TMEM106B overexpression enhanced SARS-CoV-2 infection as well as pseudovirus infection, suggesting a role in viral entry. Furthermore, single-cell RNA-sequencing of airway cells from patients with COVID-19 demonstrated that TMEM106B expression correlates with SARS-CoV-2 infection. The present study uncovered a collection of coronavirus host factors that may be exploited to develop drugs against SARS-CoV-2 infection or future zoonotic coronavirus outbreaks.


Subject(s)
COVID-19/genetics , CRISPR-Cas Systems , Genome, Human/genetics , Genome-Wide Association Study/methods , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Bronchoalveolar Lavage Fluid/cytology , COVID-19/epidemiology , COVID-19/virology , Cell Line, Tumor , Cells, Cultured , Coronavirus 229E, Human/genetics , Epidemics , Epithelial Cells/virology , Gene Expression , Host-Pathogen Interactions , Humans , Proviruses/physiology , SARS-CoV-2/physiology , Virus Internalization
10.
Cell Res ; 31(3): 272-290, 2021 03.
Article in English | MEDLINE | ID: covidwho-1039635

ABSTRACT

How the innate and adaptive host immune system miscommunicate to worsen COVID-19 immunopathology has not been fully elucidated. Here, we perform single-cell deep-immune profiling of bronchoalveolar lavage (BAL) samples from 5 patients with mild and 26 with critical COVID-19 in comparison to BALs from non-COVID-19 pneumonia and normal lung. We use pseudotime inference to build T-cell and monocyte-to-macrophage trajectories and model gene expression changes along them. In mild COVID-19, CD8+ resident-memory (TRM) and CD4+ T-helper-17 (TH17) cells undergo active (presumably antigen-driven) expansion towards the end of the trajectory, and are characterized by good effector functions, while in critical COVID-19 they remain more naïve. Vice versa, CD4+ T-cells with T-helper-1 characteristics (TH1-like) and CD8+ T-cells expressing exhaustion markers (TEX-like) are enriched halfway their trajectories in mild COVID-19, where they also exhibit good effector functions, while in critical COVID-19 they show evidence of inflammation-associated stress at the end of their trajectories. Monocyte-to-macrophage trajectories show that chronic hyperinflammatory monocytes are enriched in critical COVID-19, while alveolar macrophages, otherwise characterized by anti-inflammatory and antigen-presenting characteristics, are depleted. In critical COVID-19, monocytes contribute to an ATP-purinergic signaling-inflammasome footprint that could enable COVID-19 associated fibrosis and worsen disease-severity. Finally, viral RNA-tracking reveals infected lung epithelial cells, and a significant proportion of neutrophils and macrophages that are involved in viral clearance.


Subject(s)
Adaptive Immunity , Bronchoalveolar Lavage , COVID-19/diagnosis , COVID-19/immunology , Immunity, Innate , Single-Cell Analysis , Bronchoalveolar Lavage Fluid , CD4-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/cytology , Cell Communication , Gene Expression Profiling , Humans , Lung/virology , Macrophages, Alveolar/cytology , Monocytes/cytology , Neutrophils/cytology , Phenotype , Principal Component Analysis , RNA-Seq , Th17 Cells/cytology
11.
Clin Transl Immunology ; 9(11): e1204, 2020.
Article in English | MEDLINE | ID: covidwho-932422

ABSTRACT

OBJECTIVES: The pandemic spread of the coronavirus SARS-CoV-2 is due, in part, to the immunological properties of the host-virus interaction. The clinical presentation varies from individual to individual, with asymptomatic carriers, mild-to-moderate-presenting patients and severely affected patients. Variation in immune response to SARS-CoV-2 may underlie this clinical variation. METHODS: Using a high-dimensional systems immunology platform, we have analysed the peripheral blood compartment of 6 healthy individuals, 23 mild-to-moderate and 20 severe COVID-19 patients. RESULTS: We identify distinct immunological signatures in the peripheral blood of the mild-to-moderate and severe COVID-19 patients, including T-cell lymphopenia, more consistent with peripheral hypo- than hyper-immune activation. Unique to the severe COVID-19 cases was a large increase in the proportion of IL-10-secreting regulatory T cells, a lineage known to possess anti-inflammatory properties in the lung. CONCLUSION: As IL-10-secreting regulatory T cells are known to possess anti-inflammatory properties in the lung, their proportional increase could contribute to a more severe COVID-19 phenotype. We openly provide annotated data (https://flowrepository.org/experiments/2713) with clinical correlates as a systems immunology resource for the COVID-19 research community.

SELECTION OF CITATIONS
SEARCH DETAIL