Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
International Journal of Infectious Diseases ; 2023.
Article in English | ScienceDirect | ID: covidwho-2165396

ABSTRACT

Good's syndrome (GS) is a rare acquired immunodeficiency disease characterised by the presence of thymoma with combined B and T cell immunodeficiency in adults. Recurrent bacterial infections, particularly sinopulmonary infections caused by encapsulated bacteria, remain the most common infective presentation of GS;however, relapsing viral infections have also been reported, likely due to impaired T-cell–mediated immunity. Relapsing COVID-19 infection, however, has not been previously reported as a manifestation of GS. We present two cases of relapsing COVID-19 infection in patients with GS;in one case relapsing COVID-19 was the first manifestation of newly diagnosed GS.

2.
Infect Control Hosp Epidemiol ; 41(7): 820-825, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-2096308

ABSTRACT

OBJECTIVES: Patients with COVID-19 may present with respiratory syndromes indistinguishable from those caused by common viruses. Early isolation and containment is challenging. Although screening all patients with respiratory symptoms for COVID-19 has been recommended, the practicality of such an effort has yet to be assessed. METHODS: Over a 6-week period during a SARS-CoV-2 outbreak, our institution introduced a "respiratory surveillance ward" (RSW) to segregate all patients with respiratory symptoms in designated areas, where appropriate personal protective equipment (PPE) could be utilized until SARS-CoV-2 testing was done. Patients could be transferred when SARS-CoV-2 tests were negative on 2 consecutive occasions, 24 hours apart. RESULTS: Over the study period, 1,178 patients were admitted to the RSWs. The mean length-of-stay (LOS) was 1.89 days (SD, 1.23). Among confirmed cases of pneumonia admitted to the RSW, 5 of 310 patients (1.61%) tested positive for SARS-CoV-2. This finding was comparable to the pickup rate from our isolation ward. In total, 126 HCWs were potentially exposed to these cases; however, only 3 (2.38%) required quarantine because most used appropriate PPE. In addition, 13 inpatients overlapped with the index cases during their stay in the RSW; of these 13 exposed inpatients, 1 patient subsequently developed COVID-19 after exposure. No patient-HCW transmission was detected despite intensive surveillance. CONCLUSIONS: Our institution successfully utilized the strategy of an RSW over a 6-week period to contain a cluster of COVID-19 cases and to prevent patient-HCW transmission. However, this method was resource-intensive in terms of testing and bed capacity.


Subject(s)
Coronavirus Infections/transmission , Cross Infection/transmission , Infection Control/methods , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Occupational Diseases/prevention & control , Patient Isolation , Pneumonia, Viral/transmission , Population Surveillance/methods , Adult , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/prevention & control , Cross Infection/diagnosis , Cross Infection/prevention & control , Early Diagnosis , Female , Humans , Length of Stay , Male , Middle Aged , Pandemics/prevention & control , Patients' Rooms/organization & administration , Personal Protective Equipment , Pneumonia/virology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/prevention & control , SARS-CoV-2 , Singapore , Symptom Assessment , Tertiary Care Centers
3.
American Journal of Infection Control ; 2022.
Article in English | ScienceDirect | ID: covidwho-2085866

ABSTRACT

Background Temporary isolation wards have been introduced to meet demands for airborne-infection-isolation-rooms (AIIRs) during the COVID-19 pandemic. Environmental sampling and outbreak investigation was conducted in temporary isolation wards converted from general wards and/or prefabricated containers, in order to evaluate the ability of such temporary isolation wards to safely manage COVID-19 cases over a period of sustained use. Methods Environmental sampling for SARS-CoV-2 RNA was conducted in temporary isolation ward rooms constructed from pre-fabricated containers (N = 20) or converted from normal-pressure general wards (N = 47). Whole genome sequencing (WGS) was utilized to ascertain health care-associated transmission when clusters were reported amongst HCWs working in isolation areas from July 2020 to December 2021. Results A total of 355 environmental swabs were collected;22.4% (15/67) of patients had at least one positive environmental sample. Patients housed in temporary isolation ward rooms constructed from pre-fabricated containers (adjusted-odds-ratio, aOR = 10.46, 95% CI = 3.89-58.91, P = .008) had greater odds of detectable environmental contamination, with positive environmental samples obtained from the toilet area (60.0%, 12/20) and patient equipment, including electronic devices used for patient communication (8/20, 40.0%). A single HCW cluster was reported amongst staff working in the temporary isolation ward constructed from pre-fabricated containers;however, health care-associated transmission was deemed unlikely based on WGS and/or epidemiological investigations. Conclusion Environmental contamination with SARS-CoV-2 RNA was observed in temporary isolation wards, particularly from the toilet area and smartphones used for patient communication. However, despite intensive surveillance, no healthcare-associated transmission was detected in temporary isolation wards over 18 months of prolonged usage, demonstrating their capacity for sustained use during succeeding pandemic waves.

5.
IDCases ; 30: e01611, 2022.
Article in English | MEDLINE | ID: covidwho-1996203

ABSTRACT

Background: Prolonged shedding/relapse of COVID-19 infection has been reported, particularly in patients who received anti-CD20 agents (eg. rituximab). However, cases of occult COVID-19, in which SARS-CoV-2 persistence in lung parenchyma is diagnosed despite clearance from nasopharyngeal (NP) specimens, are uncommon. Case summary: We describe two cases of occult COVID-19 in immunocompromised patients. Both patients had received rituximab previously. Both cases initially presented as ground-glass infiltrates on lung imaging; the diagnosis was originally not suspected due to repeated demonstration of negative SARS-CoV-2 from NP specimens, and alternative etiologies were originally considered. Persistence of SARS-CoV-2 in lung parenchyma, however, was demonstrated on bronchoalveolar lavage (BAL) specimens; additionally, isolation of viable SARS-CoV-2 virus and detection of SARS-CoV-2 nucleocapsid and spike-protein antigen in lung tissue on immunohistochemistry close to 3-months from primary infection strongly suggested ongoing viral persistence and replication as a driver of the lung parenchymal changes, which resolved after antiviral treatment. Discussion: Occult COVID-19 can be a cause of unexplained ground-glass infiltrates on lung imaging; negative NP samples do not rule out SARS-CoV-2 persistence and invasive sampling must be considered. The unsuspected presence of viable virus on BAL, however, highlights that procedurists perfoming aerosol-generating-procedures during an ongoing pandemic wave must also practise appropriate infection-prevention precautions to limit potential exposure.

6.
PLoS Negl Trop Dis ; 16(8): e0010724, 2022 08.
Article in English | MEDLINE | ID: covidwho-1993442

ABSTRACT

Long Covid has raised awareness of the potentially disabling chronic sequelae that afflicts patients after acute viral infection. Similar syndromes of post-infectious sequelae have also been observed after other viral infections such as dengue, but their true prevalence and functional impact remain poorly defined. We prospectively enrolled 209 patients with acute dengue (n = 48; one with severe dengue) and other acute viral respiratory infections (ARI) (n = 161), and followed them up for chronic sequelae up to one year post-enrolment, prior to the onset of the Covid-19 pandemic. Baseline demographics and co-morbidities were balanced between both groups except for gender, with more males in the dengue cohort (63% vs 29%, p<0.001). Except for the first visit, data on symptoms were collected remotely using a purpose-built mobile phone application. Mental health outcomes were evaluated using the validated SF-12v2 Health Survey. Almost all patients (95.8% of dengue and 94.4% of ARI patients) experienced at least one symptom of fatigue, somnolence, headache, concentration impairment or memory impairment within the first week of enrolment. Amongst patients with at least 3-months of follow-up, 18.0% in the dengue cohort and 14.6% in the ARI cohort experienced persistent symptoms. The median month-3 SF-12v2 Mental Component Summary Score was lower in patients who remained symptomatic at 3 months and beyond, compared to those whose symptoms fully resolved (47.7 vs. 56.0, p<0.001), indicating that patients who self-reported persistence of symptoms also experienced functionally worse mental health. No statistically significant difference in age, gender distribution or hospitalisation status was observed between those with and without chronic sequelae. Our findings reveal an under-appreciated burden of post-infection chronic sequelae in dengue and ARI patients. They call for studies to define the pathophysiology of this condition, and determine the efficacy of both vaccines as well as antiviral drugs in preventing such sequelae.


Subject(s)
COVID-19 , Dengue , Respiratory Tract Infections , COVID-19/complications , Convalescence , Dengue/complications , Dengue/epidemiology , Disease Progression , Humans , Male , Pandemics , Respiratory Tract Infections/complications , Respiratory Tract Infections/epidemiology
8.
Trop Med Infect Dis ; 7(5)2022 May 07.
Article in English | MEDLINE | ID: covidwho-1862900

ABSTRACT

BACKGROUND: During the COVID-19 pandemic, distinguishing dengue from COVID-19 in endemic areas can be difficult, as both may present as undifferentiated febrile illness. COVID-19 cases may also present with false-positive dengue serology. Hospitalisation protocols for managing undifferentiated febrile illness are essential in mitigating the risk from both COVID-19 and dengue. METHODS: At a tertiary hospital contending with COVID-19 during a dengue epidemic, a triage strategy of routine COVID-19 testing for febrile patients with viral prodromes was used. All febrile patients with viral prodromes and no epidemiologic risk for COVID-19 were first admitted to a designated ward for COVID-19 testing, from January 2020 to December 2021. RESULTS: A total of 6103 cases of COVID-19 and 1251 cases of dengue were managed at our institution, comprising a total of 3.9% (6103/155,452) and 0.8% (1251/155,452) of admissions, respectively. A surge in dengue hospitalisations in mid-2020 corresponded closely with the imposition of a community-wide lockdown. A total of 23 cases of PCR-proven COVID-19 infection with positive dengue serology were identified, of whom only two were true co-infections; both had been appropriately isolated upon admission. Average length-of-stay for dengue cases initially admitted to isolation during the pandemic was 8.35 days (S.D. = 6.53), compared with 6.91 days (S.D. = 8.61) for cases admitted outside isolation (1.44 days, 95%CI = 0.58-2.30, p = 0.001). Pre-pandemic, only 1.6% (9/580) of dengue cases were admitted initially to isolation-areas; in contrast, during the pandemic period, 66.6% (833/1251) of dengue cases were initially admitted to isolation-areas while awaiting the results of SARS-CoV-2 testing. CONCLUSIONS: During successive COVID-19 pandemic waves in a dengue-endemic country, coinfection with dengue and COVID-19 was uncommon. Routine COVID-19 testing for febrile patients with viral prodromes mitigated the potential infection-prevention risk from COVID-19 cases, albeit with an increased length-of-stay for dengue hospitalizations admitted initially to isolation.

9.
Infect Control Hosp Epidemiol ; : 1-5, 2022 Apr 27.
Article in English | MEDLINE | ID: covidwho-1815396

ABSTRACT

Sporadic clusters of healthcare-associated coronavirus disease 2019 (COVID-19) occurred despite intense rostered routine surveillance and a highly vaccinated healthcare worker (HCW) population, during a community surge of the severe acute respiratory coronavirus virus 2 (SARS-CoV-2) B.1.617.2 δ (delta) variant. Genomic analysis facilitated timely cluster detection and uncovered additional linkages via HCWs moving between clinical areas and among HCWs sharing a common lunch area, enabling early intervention.

12.
Am J Infect Control ; 50(4): 465-468, 2022 04.
Article in English | MEDLINE | ID: covidwho-1653966

ABSTRACT

Sporadic clusters of health care-associated COVID-19 infection occurred in a highly vaccinated health care-workers and patient population, over a 3-month period during ongoing community transmission of the B.1.617.2 variant. Enhanced infection-prevention measures and robust surveillance systems, including routine-rostered-testing of all inpatients and staff and usage of N95-respirators in all clinical areas, were insufficient in achieving zero health care-associated transmission. The unvaccinated and immunocompromised remain at-risk and should be prioritized for enhanced surveillance.


Subject(s)
COVID-19 , COVID-19/prevention & control , Delivery of Health Care , Disease Outbreaks , Humans , Inpatients , SARS-CoV-2
13.
Int J Infect Dis ; 114: 132-134, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1509866

ABSTRACT

Retrospective contact tracing, enabled by the use of automated visitor-management systems and digital contact tracing, together with rapid antigen detection (RAD) for SARS-CoV-2 among visitors staying ≥ 30 minutes, identified COVID-19 cases in < 0.01% (6/72 605) of hospital visitors to a large hospital campus over an 8-week study period. The potential for nosocomial transmission of SARS-CoV-2 from hospital visitors was thus very low, and could be further mitigated by universal mask-wearing among staff and visitors.


Subject(s)
COVID-19 , SARS-CoV-2 , Contact Tracing , Hospitals , Humans , Incidence , Retrospective Studies
18.
Clin Infect Dis ; 73(3): e754-e764, 2021 08 02.
Article in English | MEDLINE | ID: covidwho-1338688

ABSTRACT

BACKGROUND: Understanding the drivers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission is crucial for control policies, but evidence of transmission rates in different settings remains limited. METHODS: We conducted a systematic review to estimate secondary attack rates (SARs) and observed reproduction numbers (Robs) in different settings exploring differences by age, symptom status, and duration of exposure. To account for additional study heterogeneity, we employed a beta-binomial model to pool SARs across studies and a negative-binomial model to estimate Robs. RESULTS: Households showed the highest transmission rates, with a pooled SAR of 21.1% (95% confidence interval [CI]:17.4-24.8). SARs were significantly higher where the duration of household exposure exceeded 5 days compared with exposure of ≤5 days. SARs related to contacts at social events with family and friends were higher than those for low-risk casual contacts (5.9% vs 1.2%). Estimates of SARs and Robs for asymptomatic index cases were approximately one-seventh, and for presymptomatic two-thirds of those for symptomatic index cases. We found some evidence for reduced transmission potential both from and to individuals younger than 20 years of age in the household context, which is more limited when examining all settings. CONCLUSIONS: Our results suggest that exposure in settings with familiar contacts increases SARS-CoV-2 transmission potential. Additionally, the differences observed in transmissibility by index case symptom status and duration of exposure have important implications for control strategies, such as contact tracing, testing, and rapid isolation of cases. There were limited data to explore transmission patterns in workplaces, schools, and care homes, highlighting the need for further research in such settings.


Subject(s)
COVID-19 , SARS-CoV-2 , Contact Tracing , Family Characteristics , Humans , Incidence
19.
Singapore Med J ; 2021 Jun 22.
Article in English | MEDLINE | ID: covidwho-1280945

ABSTRACT

INTRODUCTION: Healthcare workers (HCWs) are a critical resource in the effort to control the COVID-19 pandemic. They are also a sentinel surveillance population whose clinical status reflects the effectiveness of the hospital's infection prevention measures in the pandemic. METHODS: This was a retrospective cohort study conducted in Singapore General Hospital (SGH), a 1,822-bed tertiary hospital. Participants were all HCWs working in SGH during the study period. HCW protection measures included clinical workflows and personal protective equipment developed and adapted to minimise the risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission. HCW monitoring comprised staff contact logs in high-risk locations, twice-daily temperature monitoring, assessment of HCWs with acute respiratory illnesses (ARIs) in the staff clinic and, in the event of an exposure, extensive contact tracing, detailed risk assessment and risk-based interventions. HCW surveillance utilised monitoring data and ARI presentations and outcomes. RESULTS: In the ten-week period between 6 January 2020 and 16 March 2020, 333 (17.1%) of 1,946 HCWs at risk of occupational COVID-19 presented with ARI. 32 (9.6%) screened negative for SARS-CoV-2 from throat swabs. Five other HCWs developed COVID-19 attributed to non-clinical exposures. From the nine COVID-19 exposure episodes investigated, 189 HCW contacts were identified, of whom 68 (36.2%) were placed on quarantine and remained well. CONCLUSION: Early in an emerging infectious disease outbreak, close monitoring of frontline HCWs is essential in ascertaining the effectiveness of infection prevention measures. HCWs are at risk of community disease acquisition and should be monitored and managed to prevent onward transmission.

20.
Am J Infect Control ; 49(6): 685-689, 2021 06.
Article in English | MEDLINE | ID: covidwho-1279522

ABSTRACT

OBJECTIVES: Since December 2019, COVID-19 has caused a worldwide pandemic and Singapore has seen escalating cases with community spread. Aggressive contact tracing and identification of suspects has helped to identify local community clusters, surveillance being the key to early intervention. Healthcare workers (HCWs) have contracted COVID-19 infection both at the workplace and community. We aimed to create a prototype staff surveillance system for the detection of acute respiratory infection (ARI) clusters amongst our HCWs and describe its effectiveness. METHODS: A prototypical surveillance system was built on existing electronic health record infrastructure. RESULTS: Over a 10-week period, we investigated 10 ARI clusters amongst 7 departments. One of the ARI clusters was later determined to be related to COVID-19 infection. We demonstrate the feasibility of syndromic surveillance to detect ARI clusters during the COVID-19 outbreak. CONCLUSION: The use of syndromic surveillance to detect ARI clusters amongst HCWs in the COVID-19 pandemic may enable early case detection and prevent onward transmission. It could be an important tool in infection prevention within healthcare institutions.


Subject(s)
COVID-19 , Pandemics , Disease Outbreaks , Electronic Health Records , Health Personnel , Humans , SARS-CoV-2 , Sentinel Surveillance , Singapore/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL