Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-336738


ABSTRACT Comprehensive analyses showed that SARS-CoV-2 infection caused COVID-19 and induced strong immune responses and sometimes severe illnesses. However, cellular features of recovered patients and long-term health consequences remain largely unexplored. In this study, we collected peripheral blood samples from recovered COVID-19 patients (average age of 35.7 years old) from Hubei province, China, 3 months after discharge;and carried out RNA-seq and whole-genome bisulfite sequencing (WGBS) to identify hallmarks of recovered COVID-19 patients. Our analyses showed significant changes both in expression and DNA methylation of genes and transposable elements (TEs) in recovered COVID-19 patients. We identified 639 misregulated genes and 18516 differentially methylated regions (DMRs) in total. Genes with aberrant expression and DMRs were found to be associated with immune responses and other related biological processes, implicating prolonged overreaction of the immune system in response to SARS-CoV-2 infection. Notably, a significant amount of TEs were aberrantly activated and TE activation was positively correlated with COVID-19 severity. Moreover, differentially methylated TEs may regulate adjacent gene expression as regulatory elements. Those identified transcriptomic and epigenomic signatures define and drive the features of recovered COVID-19 patients, helping determine the risks of long COVID-19, and providing guidance for clinical intervention.

Front Med ; 16(1): 111-125, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1356049


The Coronavirus disease 2019 (COVID-19) has spread globally. Although mixed liver impairment has been reported in COVID-19 patients, the association of liver injury caused by specific subtype especially chronic hepatitis B (CHB) with COVID-19 has not been elucidated. In this multi-center, retrospective, and observational cohort study, 109 CHB and 327 non-CHB patients with COVID-19 were propensity score matched at an approximate ratio of 3:1 on the basis of age, sex, and comorbidities. Demographic characteristics, laboratory examinations, disease severity, and clinical outcomes were compared. Furthermore, univariable and multivariable logistic and Cox regression models were used to explore the risk factors for disease severity and mortality, respectively. A higher proportion of CHB patients (30 of 109 (27.52%)) developed into severe status than non-CHB patients (17 of 327 (5.20%)). In addition to previously reported liver impairment markers, such as alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and total bilirubin, we identified several novel risk factors including elevated lactate dehydrogenase (⩾ 245 U/L, hazard ratio (HR) = 8.639, 95% confidence interval (CI) = 2.528-29.523; P < 0.001) and coagulation-related biomarker D-dimer (⩾ 0.5 µg/mL, HR = 4.321, 95% CI = 1.443-12.939; P = 0.009) and decreased albumin (< 35 g/L, HR = 0.131, 95% CI = 0.048-0.361; P < 0.001) and albumin/globulin ratio (< 1.5, HR = 0.123, 95% CI = 0.017-0.918; P = 0.041). In conclusion, COVID-19 patients with CHB were more likely to develop into severe illness and die. The risk factors that we identified may be helpful for early clinical surveillance of critical progression.

COVID-19 , Hepatitis B, Chronic , Cohort Studies , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/epidemiology , Humans , Retrospective Studies , Risk Factors