Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Front Immunol ; 12: 735125, 2021.
Article in English | MEDLINE | ID: covidwho-1441109


Background: The global outbreak of coronavirus disease 2019 (COVID-19) has turned into a worldwide public health crisis and caused more than 100,000,000 severe cases. Progressive lymphopenia, especially in T cells, was a prominent clinical feature of severe COVID-19. Activated HLA-DR+CD38+ CD8+ T cells were enriched over a prolonged period from the lymphopenia patients who died from Ebola and influenza infection and in severe patients infected with SARS-CoV-2. However, the CD38+HLA-DR+ CD8+ T population was reported to play contradictory roles in SARS-CoV-2 infection. Methods: A total of 42 COVID-19 patients, including 32 mild or moderate and 10 severe or critical cases, who received care at Beijing Ditan Hospital were recruited into this retrospective study. Blood samples were first collected within 3 days of the hospital admission and once every 3-7 days during hospitalization. The longitudinal flow cytometric data were examined during hospitalization. Moreover, we evaluated serum levels of 45 cytokines/chemokines/growth factors and 14 soluble checkpoints using Luminex multiplex assay longitudinally. Results: We revealed that the HLA-DR+CD38+ CD8+ T population was heterogeneous, and could be divided into two subsets with distinct characteristics: HLA-DR+CD38dim and HLA-DR+CD38hi. We observed a persistent accumulation of HLA-DR+CD38hi CD8+ T cells in severe COVID-19 patients. These HLA-DR+CD38hi CD8+ T cells were in a state of overactivation and consequent dysregulation manifested by expression of multiple inhibitory and stimulatory checkpoints, higher apoptotic sensitivity, impaired killing potential, and more exhausted transcriptional regulation compared to HLA-DR+CD38dim CD8+ T cells. Moreover, the clinical and laboratory data supported that only HLA-DR+CD38hi CD8+ T cells were associated with systemic inflammation, tissue injury, and immune disorders of severe COVID-19 patients. Conclusions: Our findings indicated that HLA-DR+CD38hi CD8+ T cells were correlated with disease severity of COVID-19 rather than HLA-DR+CD38dim population.

CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Immune System Diseases/immunology , SARS-CoV-2 , Adult , Aged , CD8 Antigens/immunology , Cytokines/immunology , Female , HLA-DR Antigens/immunology , Humans , Male , Middle Aged , Retrospective Studies , Severity of Illness Index , Young Adult
Innovation (N Y) ; 2(2): 100099, 2021 May 28.
Article in English | MEDLINE | ID: covidwho-1142304


SARS-CoV-2 has caused over 100 million deaths and continues to spread rapidly around the world. Asymptomatic transmission of SARS-CoV-2 is the Achilles' heel of COVID-19 public health control measures. Phylogenomic data on SARS-CoV-2 could provide more direct information about asymptomatic transmission. In this study, using a novel MINERVA sequencing technology, we traced asymptomatic transmission of COVID-19 patients in Beijing, China. One hundred and seventy-eight close contacts were quarantined, and 14 COVID-19 patients were laboratory confirmed by RT-PCR. We provide direct phylogenomic evidence of asymptomatic transmission by constructing the median joining network in the cluster. These data could help us to determine whether the current symptom-based screening should cover asymptomatic persons.

Nat Commun ; 11(1): 5503, 2020 10 30.
Article in English | MEDLINE | ID: covidwho-894393


The spread of SARS-CoV-2 in Beijing before May, 2020 resulted from transmission following both domestic and global importation of cases. Here we present genomic surveillance data on 102 imported cases, which account for 17.2% of the total cases in Beijing. Our data suggest that all of the cases in Beijing can be broadly classified into one of three groups: Wuhan exposure, local transmission and overseas imports. We classify all sequenced genomes into seven clusters based on representative high-frequency single nucleotide polymorphisms (SNPs). Genomic comparisons reveal higher genomic diversity in the imported group compared to both the Wuhan exposure and local transmission groups, indicating continuous genomic evolution during global transmission. The imported group show region-specific SNPs, while the intra-host single nucleotide variations present as random features, and show no significant differences among groups. Epidemiological data suggest that detection of cases at immigration with mandatory quarantine may be an effective way to prevent recurring outbreaks triggered by imported cases. Notably, we also identify a set of novel indels. Our data imply that SARS-CoV-2 genomes may have high mutational tolerance.

Betacoronavirus/growth & development , Coronavirus Infections/virology , Pneumonia, Viral/virology , Adult , Beijing/epidemiology , COVID-19 , Coronavirus Infections/epidemiology , Female , Genome, Viral , Genomics , Genotype , Humans , Male , Middle Aged , Mutation , Pandemics , Phylogeny , Pneumonia, Viral/epidemiology , Polymorphism, Single Nucleotide , SARS-CoV-2 , Travel , Young Adult