Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
researchsquare; 2021.


The recurrent outbreak of coronaviruses and variants underscores the need for broadly reactive antivirals and vaccines. Here, a novel broad-spectrum human antibody named 76E1 was isolated from a COVID-19 convalescent patient and showed broad neutralization activity against multiple α- and β-coronaviruses, including the SARS-CoV-2 variants and also exhibited the binding breath to peptides containing the epitope from γ- and δ- coronaviruses. 76E1 cross-protects mice from SARS-CoV-2 and HCoV-OC43 infection in both prophylactic and treatment models. The epitope including the fusion peptide and S2’ cleavage site recognized by 76E1 was significantly conserved among α-, β-, γ- and δ- coronaviruses. We uncovered a novel mechanism of antibody neutralization that the epitope of 76E1 was proportionally less exposed in the prefusion trimeric structure of spike protein but could be unmasked by binding to the receptor ACE2. Once the epitope exposed, 76E1 inhibited S2’ cleavage, thus blocked the membrane fusion process. Our data demonstrate a key epitope targeted by broadly-neutralizing antibodies and will guide next-generation epitope-based pan-coronavirus vaccine design.

COVID-19 , Infections
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.04.361576


The COVID-19 pandemic is a widespread and deadly public health crisis. The pathogen SARS-CoV-2 replicates in the lower respiratory tract and causes fatal pneumonia. Although tremendous efforts have been put into investigating the pathogeny of SARS-CoV-2, the underlying mechanism of how SARS-CoV-2 interacts with its host is largely unexplored. Here, by comparing the genomic sequences of SARS-CoV-2 and human, we identified five fully conserved elements in SARS-CoV-2 genome, which were termed as "human identical sequences (HIS)". HIS are also recognized in both SARS-CoV and MERS-CoV genome. Meanwhile, HIS-SARS-CoV-2 are highly conserved in the primate. Mechanically, HIS-SARS-CoV-2 RNA directly binds to the targeted loci in human genome and further interacts with host enhancers to activate the expression of adjacent and distant genes, including cytokines gene and angiotensin converting enzyme II (ACE2), a well-known cell entry receptor of SARS-CoV-2, and hyaluronan synthase 2 (HAS2), which further increases hyaluronan formation. Noteworthily, hyaluronan level in plasma of COVID-19 patients is tightly correlated with severity and high risk for acute respiratory distress syndrome (ARDS) and may act as a predictor for the progression of COVID-19. HIS antagomirs, which downregulate hyaluronan level effectively, and 4-Methylumbelliferone (MU), an inhibitor of hyaluronan synthesis, are potential drugs to relieve the ARDS related ground-glass pattern in lung for COVID-19 treatment. Our results revealed that unprecedented HIS elements of SARS-CoV-2 contribute to the cytokine storm and ARDS in COVID-19 patients. Thus, blocking HIS-involved activating processes or hyaluronan synthesis directly by 4-MU may be effective strategies to alleviate COVID-19 progression.

COVID-19 , Respiratory Distress Syndrome , Pneumonia , Severe Acute Respiratory Syndrome , Dissociative Identity Disorder
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.14.147868


In the absence of a proven effective vaccine preventing infection by SARS-CoV-2, or a proven drug to treat COVID-19, the positive results of passive immune therapy using convalescent serum provides a strong lead. We have developed a new class of tetravalent, biparatopic therapy, 89C8-ACE2. It combines the specificity of a monoclonal antibody (89C8) that recognizes the relatively conserved N-terminal domain (NTD) of the viral S glycoprotein, and the ectodomain of ACE2, which binds to the receptor-binding domain (RBD) of S. This molecule shows exceptional performance in vitro, inhibiting the interaction of recombinant S1 to ACE2 and transduction of ACE2-overexpressing cells by S-pseudotyped lentivirus with IC50s substantially below 100 pM, and with potency approximately 100-fold greater than ACE2-Fc itself. Moreover, 89C8-ACE2 was able to neutralize authentic virus infection in a standard assay at low nanomolar concentrations, making this class of molecule a promising lead for therapeutic applications.

COVID-19 , Tumor Virus Infections