Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add filters

Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.11.22.517500

ABSTRACT

There is an urgent need for efficient and safe vaccines against the monkeypox virus (MPXV) in response to the rapidly spreading monkeypox epidemic. In the age of COVID-19, mRNA vaccines have been highly successful and emerged as platforms enabling rapid development and large-scale preparation. Here, we have developed two MPXV quadrivalent mRNA vaccines, named mRNA-A-LNP and mRNA-B-LNP, based on two IMVs (A29L and M1R) and two EEVs (A35R and B6R). By administering mRNA-A-LNP and mRNA-B-LNP intramuscularly twice, mice have induced MPXV-specific IgG antibodies and potent Vaccinia virus (VACV)-specific neutralizing antibodies. Additionally, it elicited durable MPXV-specific killer memory T-cell immunity as well as memory B-cell immunity in mice. Furthermore, the passive transfer of sera from mRNA-A-LNP and mRNA-B-LNP-immunized mice protected nude mice against the VACV challenge. In addition, two doses of mRNA-A-LNP and mRNA-B-LNP were also protective against the VACV challenge in mice. Overall, our results demonstrated that mRNA-A-LNP and mRNA-B-LNP appear to be safe and effective vaccine candidates against monkeypox epidemics, as well as against outbreaks caused by other orthopoxviruses, including the smallpox virus.

2.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2301923.v1

ABSTRACT

The ongoing coronavirus disease pandemic has fostered major advances in vaccination technologies; however, there are urgent needs of mucosal immune responses and single-dose, non-invasive administration. Here, we develop a SARS-CoV-2 vaccine for single-dose, dry-powder aerosol inhalation that induces potent systemic and mucosal immune responses. Our vaccine encapsulates proteinaceous cholera toxin B subunit-assembled nanoparticles displaying the SARS-CoV-2 RBD antigen (R-CNP) within microcapsules of optimal aerodynamic size, and such unique nano-micro coupled structure supports efficient alveoli delivery, sustained R-CNP release, and antigen presenting cell uptake, which are favorable for invocation of immune responses. Moreover, our vaccine successfully induces robust serological IgG and secretory IgA production, collectively conferring effective protection from SARS-CoV-2 challenge (including pseudovirus and the authentic virus) in mice, hamsters, and non-human primates. Finally, we also demonstrate a “mosaic iteration” of our vaccine that co-displays ancestral and Omicron’s antigens, thus extending the breadth of antibody response against co-circulating strains and transmission of Omicron variant. These findings support our inhalable vaccine as a promising candidate to prevent SARS-CoV-2 infection, disease, and transmission.

3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.05.30.22275753

ABSTRACT

Homologous and heterologous booster with COVID-19 mRNA vaccines represent the most effective strategy to prevent the ongoing Omicron pandemic. The additional protection from these prototype SARS-CoV-2 S-targeting vaccine was attributed to the increased RBD-specific memory B cells with expanded potency and breadth. Herein, we show the safety and immunogenicity of heterologous boosting with the RBD-targeting mRNA vaccine AWcorna (also term ARCoV) in Chinese adults who have received two doses inactivated vaccine. The superiority over inactivated vaccine in neutralization antibodies, as well as the safety profile, support the use of AWcorna as heterologous booster in China.

4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.04.30.489997

ABSTRACT

Recent emergence of SARS-CoV-2 Omicron sublineages BA.2.12.1, BA.2.13, BA.4 and BA.5 all contain L452 mutations and show potential higher transmissibility over BA.2. The new variants' receptor binding and immune evasion capability require immediate investigation, especially on the role of L452 substitutions. Herein, coupled with structural comparisons, we showed that BA.2 sublineages, including BA.2.12.1 and BA.2.13, exhibit increased ACE2-binding affinities compared to BA.1; while BA.4/BA.5 shows the weakest receptor-binding activity due to F486V and R493Q reversion. Importantly, compared to BA.2, BA.2.12.1 and BA.4/BA.5 exhibit stronger neutralization escape from the plasma of 3-dose vaccinees and, most strikingly, from vaccinated BA.1 convalescents. To delineate the underlying evasion mechanism, we determined the escaping mutation profiles, epitope distribution and Omicron sublineage neutralization efficacy of 1640 RBD-directed neutralizing antibodies (NAbs), including 614 isolated from BA.1 convalescents. Interestingly, post-vaccination BA.1 infection mainly recalls wildtype (WT) induced humoral memory and elicits antibodies that neutralize both WT and BA.1. These cross-reactive NAbs are significantly enriched on non-ACE2-competing epitopes; and surprisingly, the majority are undermined by R346 and L452 substitutions, namely R346K (BA.1.1), L452M (BA.2.13), L452Q (BA.2.12.1) and L452R (BA.4/BA.5), suggesting that R346K and L452 mutations appeared under the immune pressure of Omicron convalescents. Nevertheless, BA.1 infection can also induce new clones of BA.1-specific antibodies that potently neutralize BA.1 but do not respond to WT SARS-CoV-2, due to the high susceptibility to N501, N440, K417 and E484. However, these NAbs are largely escaped by BA.2 sublineages and BA.4/BA.5 due to D405N and F486V, exhibiting poor neutralization breadths. As for therapeutic NAbs, LY-CoV1404 (Bebtelovimab) and COV2-2130 (Cilgavimab) can still effectively neutralize BA.2.12.1 and BA.4/BA.5, while the S371F, D405N and R408S mutations carried by BA.2/BA.4/BA.5 sublineages would undermine most broad sarbecovirus NAbs. Together, our results indicate that Omicron can evolve mutations to specifically evade humoral immunity elicited by BA.1 infection. The continuous evolution of Omicron poses great challenges to SARS-CoV-2 herd immunity and suggests that BA.1-derived vaccine boosters may not be ideal for achieving broad-spectrum protection.

5.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1611421.v1

ABSTRACT

Recent emergence of SARS-CoV-2 Omicron sublineages BA.2.12.1, BA.2.13, BA.4 and BA.5 all contain L452 mutations and show potential higher transmissibility over BA.2. The new variants’ receptor binding and immune evasion capability require immediate investigation, especially on the role of L452 substitutions. Herein, coupled with structural comparisons, we showed that BA.2 sublineages, including BA.2.12.1 and BA.2.13, exhibit increased ACE2-binding affinities compared to BA.1; while BA.4/BA.5 shows the weakest receptor-binding activity due to F486V and R493Q reversion. Importantly, compared to BA.2, BA.2.12.1 and BA.4/BA.5 exhibit stronger neutralization escape from the plasma of 3-dose vaccinees and, most strikingly, from vaccinated BA.1 convalescents. To delineate the underlying evasion mechanism, we determined the escaping mutation profiles, epitope distribution and Omicron sub-lineage neutralization efficacy of 1640 RBD-directed neutralizing antibodies (NAbs), including 614 isolated from BA.1 convalescents. Interestingly, post-vaccination BA.1 infection mainly recalls wildtype-induced humoral memory and elicits antibodies that neutralize both wild-type and BA.1. These cross-reactive NAbs are significantly enriched on non-ACE2-competing epitopes; and surprisingly, the majority are undermined by R346 and L452 substitutions, namely R346K (BA.1.1), L452M (BA.2.13), L452Q (BA.2.12.1) and L452R (BA.4/BA.5), suggesting that R346K and L452 mutations appeared under the immune pressure of Omicron convalescents. Nevertheless, BA.1 infection can also induce new clones of BA.1-specific antibodies that potently neutralize BA.1 but do not respond to wild-type SARS-CoV-2, due to the high susceptibility to N501, N440, K417 and E484. However, these NAbs are largely escaped by BA.2 sublineages and BA.4/BA.5 due to D405N and F486V, exhibiting poor neutralization breadths. As for therapeutic NAbs, LY-CoV1404 (Bamlanivimab) and COV2-2130 (Cilgavimab) can still effectively neutralize BA.2.12.1 and BA.4/BA.5, while the S371F, D405N and R408S mutations carried by BA.2/BA.4/BA.5 sublineages would undermine most broad sarbecovirus NAbs. Together, our results indicate that Omicron can evolve mutations to specifically evade humoral immunity elicited by BA.1 infection. The continuous evolution of Omicron poses great challenges to SARS-CoV-2 herd immunity and suggests that BA.1-derived vaccine boosters may not be ideal for achieving broad-spectrum protection.

6.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.07.479349

ABSTRACT

Constantly emerging SARS-CoV-2 variants, such as Omicron BA.1, BA.1.1 and BA.2, pose a severe challenge to COVID-19 control. Broad-spectrum antibody therapeutics and vaccines are needed for defending against future SARS-CoV-2 variants and sarbecovirus pandemics; however, we have yet to gain a comprehensive understanding of the epitopes capable of inducing broad sarbecovirus neutralization. Here, we report the identification of 241 anti-RBD broad sarbecovirus neutralizing antibodies isolated from 44 SARS-CoV-2 vaccinated SARS convalescents. Neutralizing efficacy of these antibodies against D614G, SARS-CoV-1, Omicron variants (BA.1, BA.1.1, BA.2), RATG13 and Pangolin-GD is tested, and their binding capability to 21 sarbecovirus RBDs is measured. High-throughput yeast-display mutational screening was further applied to determine each antibody's RBD escaping mutation profile, and unsupervised epitope clustering based on escaping mutation hotspots was performed. A total of 6 clusters of broad sarbecovirus neutralizing antibodies with diverse breadth and epitopes were identified, namely Group E1 (S309, BD55-3152 site), E3 (S2H97 site), F1 (CR3022, S304 site), F2 (DH1047, BD55-3500 site), F3 (ADG-2, BD55-3372 site) and B' (S2K146 site). Members of E1, F2 and F3 demonstrate the highest neutralization potency; yet, Omicron, especially BA.2, has evolved multiple mutations (G339D, N440K, T376A, D405N, R408S) to escape antibodies of these groups. Nevertheless, broad sarbecovirus neutralizing antibodies that survived Omicron would serve as favorable therapeutic candidates. Furthermore, structural analyses of selected drug candidates propose two non-competing antibody pairing strategies, E1-F2 and E1-F3, as broad-spectrum antibody cocktails. Together, our work provides a comprehensive epitope map of broad sarbecovirus neutralizing antibodies and offers critical instructions for designing broad-spectrum vaccines.

7.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.24.474084

ABSTRACT

Omicron, the most heavily mutated SARS-CoV-2 variant so far, is highly resistant to neutralizing antibodies, raising unprecedented concerns about the effectiveness of antibody therapies and vaccines. We examined whether sera from individuals who received two or three doses of inactivated vaccine, could neutralize authentic Omicron. The seroconversion rates of neutralizing antibodies were 3.3% (2/60) and 95% (57/60) for 2- and 3-dose vaccinees, respectively. For three-dose recipients, the geometric mean neutralization antibody titer (GMT) of Omicron was 15, 16.5-fold lower than that of the ancestral virus (254). We isolated 323 human monoclonal antibodies derived from memory B cells in 3-dose vaccinees, half of which recognize the receptor binding domain (RBD) and show that a subset of them (24/163) neutralize all SARS-CoV-2 variants of concern (VOCs), including Omicron, potently. Therapeutic treatments with representative broadly neutralizing mAbs individually or antibody cocktails were highly protective against SARS-CoV-2 Beta infection in mice. Atomic structures of the Omicron S in complex with three types of all five VOC-reactive antibodies defined the binding and neutralizing determinants and revealed a key antibody escape site, G446S, that confers greater resistance to one major class of antibodies bound at the right shoulder of RBD through altering local conformation at the binding interface. Our results rationalize the use of 3-dose immunization regimens and suggest that the fundamental epitopes revealed by these broadly ultrapotent antibodies are a rational target for a universal sarbecovirus vaccine. One sentence summary A sub-set of antibodies derived from memory B cells of volunteers vaccinated with 3 doses of an inactivated SARS-CoV-2 vaccine work individually as well as synergistically to keep variants, including Omicron, at bay.

8.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.07.470392

ABSTRACT

The SARS-CoV-2 B.1.1.529 variant (Omicron) contains 15 mutations on the receptor-binding domain (RBD). How Omicron would evade RBD neutralizing antibodies (NAbs) and humoral immunity requires immediate investigation. Here, we used high-throughput yeast display screening1,2 to determine the RBD escaping mutation profiles for 247 human anti-RBD NAbs identified from SARS-CoV/SARS-CoV-2 convalescents and vaccinees. Based on the results, NAbs could be unsupervised clustered into six epitope groups (A-F), which is highly concordant with knowledge-based structural classifications3-5. Strikingly, various single mutations of Omicron could impair NAbs of different epitope groups. Specifically, NAbs in Group A-D, whose epitope overlaps with ACE2-binding motif, are largely escaped by K417N, N440K, G446S, E484A, Q493K, and G496S. Group E (S309 site)6 and F (CR3022 site)7 NAbs, which often exhibit broad sarbecovirus neutralizing activity, are less affected by Omicron, but still, a subset of NAbs are escaped by G339D, S371L, and S375F. Furthermore, B.1.1.529 pseudovirus neutralization and RBD binding assay showed that single mutation tolerating NAbs could also be escaped due to multiple synergetic mutations on their epitopes. In total, over 85% of the tested NAbs are escaped by Omicron. Regarding NAb drugs, LY-CoV016/LY-CoV555 cocktail, REGN-CoV2 cocktail, AZD1061/AZD8895 cocktail, and BRII-196 were escaped by Omicron, while VIR7831 and DXP-604 still function at reduced efficacy. Together, data suggest Omicron could cause significant humoral immune evasion, while NAbs targeting the sarbecovirus conserved region remain most effective. Our results offer instructions for developing NAb drugs and vaccines against Omicron and future variants.

9.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1148985.v1

ABSTRACT

The SARS-CoV-2 B.1.1.529 variant (Omicron) contains 15 mutations on the receptor-binding domain (RBD). How Omicron would evade RBD neutralizing antibodies (NAbs) and humoral immunity requires immediate investigation. Here, we used high-throughput yeast display screening1,2 to determine the RBD escaping mutation profiles for 247 human anti-RBD NAbs identified from SARS-CoV/SARS-CoV-2 convalescents and vaccinees. Based on the results, NAbs could be unsupervised clustered into six epitope groups (A-F), which is highly concordant with knowledge-based structural classifications3-5. Strikingly, various single mutations of Omicron could impair NAbs of different epitope groups. Specifically, NAbs in Group A-D, whose epitope overlaps with ACE2-binding motif, are largely escaped by K417N, N440K, G446S, E484A, Q493K, and G496S. Group E (S309 site)6 and F (CR3022 site)7 NAbs, which often exhibit broad sarbecovirus neutralizing activity, are less affected by Omicron, but still, a subset of NAbs are escaped by G339D, S371L, and S375F. Furthermore, B.1.1.529 pseudovirus neutralization and RBD binding assay showed that single mutation tolerating NAbs could also be escaped due to multiple synergetic mutations on their epitopes. In total, over 85% of the tested NAbs are escaped by Omicron. Regarding NAb drugs, LY-CoV016/LY-CoV555 cocktail, REGN-CoV2 cocktail, AZD1061/AZD8895 cocktail, and BRII-196 were escaped by Omicron, while VIR7831 and DXP-604 still function at reduced efficacy. Together, data suggest Omicron could cause significant humoral immune evasion, while NAbs targeting the sarbecovirus conserved region remain most effective. Our results offer instructions for developing NAb drugs and vaccines against Omicron and future variants.

10.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.02.21261735

ABSTRACT

Emergence of variants of concern (VOC) with altered antigenic structures and waning humoral immunity to SARS-CoV-2 are harbingers of a long pandemic. Administration of a third dose of an inactivated virus vaccine can boost the immune response. Here, we have dissected the immunogenic profiles of antibodies from 3-dose vaccinees, 2-dose vaccinees and convalescents. Better neutralization breadth to VOCs, expeditious recall and long-lasting humoral response bolster 3-dose vaccinees in warding off COVID-19. Analysis of 171 complex structures of SARS-CoV-2 neutralizing antibodies identified structure-activity correlates, revealing ultrapotent, VOCs-resistant and broad-spectrum antigenic patches. Construction of immunogenic and mutational heat maps revealed a direct relationship between "hot" immunogenic sites and areas with high mutation frequencies. Ongoing antibody somatic mutation, memory B cell clonal turnover and antibody composition changes in B cell repertoire driven by prolonged and repeated antigen stimulation confer development of monoclonal antibodies with enhanced neutralizing potency and breadth. Our findings rationalize the use of 3-dose immunization regimens for inactivated vaccines. One sentence summaryA third booster dose of inactivated vaccine produces a highly sifted humoral immune response via a sustained evolution of antibodies capable of effectively neutralizing SARS-CoV-2 variants of concern.

11.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.30.454402

ABSTRACT

The spread of the SARS-CoV-2 variants could seriously dampen the global effort to tackle the COVID-19 pandemic. Recently, we investigated the humoral antibody responses of SARS-CoV-2 convalescent patients and vaccinees towards circulating variants, and identified a panel of monoclonal antibodies (mAbs) that could efficiently neutralize the B.1.351 (Beta) variant. Here we investigate how these mAbs target the B.1.351 spike protein using cryo-electron microscopy. In particular, we show that two superpotent mAbs, BD-812 and BD-836, have non-overlapping epitopes on the receptor-binding domain (RBD) of spike. Both block the interaction between RBD and the ACE2 receptor; and importantly, both remain fully efficacious towards the B.1.617.1 (Kappa) and B.1.617.2 (Delta) variants. The BD-812/BD-836 pair could thus serve as an ideal antibody cocktail against the SARS-CoV-2 VOCs.

12.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-734963.v1

ABSTRACT

The spike (S) protein of SARS coronavirus 2 (SARS-CoV-2) is an ideal target for the development of specific vaccines or drugs. However, treatments targeting viruses with mutant S proteins that have recently emerged in many countries are limited. Cleavage of the S protein by host proteases is essential for viral infection. Here, we discovered two novel sites (CS-1 and CS-2) in the S protein for cleavage by the protease Cathepsin L (CTSL). Both sites are highly conserved among all SARS-CoV-2 variants of concern. Cryo-electron microscopy structural studies revealed that CTSL cleavage increases the dynamics of the receptor binding domain of S and induces novel conformations. In our pseudovirus (PsV) infection experiment, alteration of the cleavage site significantly reduced the infection efficiency, and CTSL inhibitors markedly inhibited infection with PsVs of both the wild-type and emerged SARS-CoV-2 variants. Furthermore, six highly efficient CTSL inhibitors were found to effectively inhibit live virus infection in human cells in vitro , and two of these were further confirmed to prevent live virus infection in human ACE2 transgenic mice in vivo . Our work suggested that the CTSL cleavage sites in SARS-CoV-2 S are emerging new but effective targets for the development of mutation-resistant vaccines and drugs.

13.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-681182.v1

ABSTRACT

The SARS-CoV-2 virus has had a major impact on global human health. During the spread of SARS-CoV-2, weakened host immunity and the use of vaccines with low efficacy may result in the development of more virulent strains or strains with resistance to existing vaccines and antibodies. The prevalence of SARS-CoV-2 mutant strains differs among regions, and this variation may affect the effectiveness of vaccines. In this study, an epidemiological investigation of SARS-CoV-2 in Portugal was performed, and the VSV-ΔG-G* pseudovirus system was used to construct 12 S protein epidemic mutants, D614G, A222V+D614G, B.1.1.7, S477N+D614G, P1162R+D614G+A222V, D839Y+D614G, L176F+D614G, B.1.1.7+L216F, B.1.1.7+M740V, B.1.258, B.1.258+L1063F, and B.1.258+N751Y.The mutant pseudoviruses were used to infect four susceptible cell lines (i.e., Huh7, hACE2-293T, Vero, and LLC-MK2) and 14 cell lines overexpressing ACE2 from different species. Mutant strains did not show increased infectivity or cross-species transmission. Neutralization activity was evaluated using the newly constructed pseudoviruses, mouse serum, and 11 monoclonal antibodies. The neutralizing activity in immunized mouse serum was not significantly reduced for the mutant strains. Additionally, mutant strains in Portugal showed escape from 9 of 11 monoclonal antibodies. Neutralization resistance was mainly caused by the S477N, N439K, and N501Y mutations in the Spike receptor binding domain. These findings emphasize the importance of SARS-CoV-2 mutation tracking in different regions for epidemic prevention and control.

14.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-596463.v1

ABSTRACT

SARS-CoV-2 has caused the COVID-19 pandemic. Recently, B.1.617 variants have been transmitted rapidly in India. The transmissibility, pathogenicity, and neutralization characteristics of these variants have received considerable interest. In this study, 22 pseudotyped viruses were constructed for B.1.617 variants and their corresponding single amino acid mutations. B.1.617 variants did not exhibit significant enhanced infectivity in human cells, but mutations T478K and E484Q in the receptor binding domain led to enhanced infectivity in mouse ACE2-overexpressing cells. Furin activities were slightly increased against B.1.617 variants and cell–cell fusion after infection of B.1.617 variants was enhanced. Furthermore, B.1.617 variants escaped neutralization by several mAbs, mainly because of mutations L452R, T478K, and E484Q in the receptor binding domain. The neutralization activities of sera from convalescent patients, inactivated vaccine-immunized volunteers, adenovirus vaccine-immunized volunteers, and SARS-CoV-2 immunized animals against pseudotyped B.1.617 variants were reduced by approximately twofold, compared with the D614G variant.

15.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-562694.v1

ABSTRACT

COVID-19 has spread worldwide. However, SARS-CoV-2 serological markers, which usually important indicators of disease progression, remains to be studied. To determine serological patterns during infection and their corresponding influencing factors, we conducted a cohort study including 115 patients with COVID-19 from 41 hospitals. The study included measuring IgM, IgG, and neutralizing antibodies (NAb) in serum, conducting epidemiological survey of the subjects, and retrieving clinical indicators from electronic medical records. We found NAb had the highest seroconversion rate (79.61%), followed by IgG (60.42%), and IgM (26.56%). Seroconversion rate peaked 20–40 d post-infection with NAb reaching 100%. The Geometric mean of NAb ID50 is 201 (30 to 6271). The NAb titer was positively correlated with duration of infection (p = 0), IgM (p = 0.016), and IgG (p = 0). Compared with IgM or IgG, NAb has better diagnostic sensitivity and serological patterns are valuable for clinical diagnosis and disease monitoring.

16.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.17.21257134

ABSTRACT

An unequitable vaccine allocation and continuously emerging SARS-CoV-2 variants pose challenges to contain the pandemic, which underscores the need for licensing more vaccine candidates, increasing manufacturing capacity and implementing better immunization strategy. Here, we report data from a proof-of-concept investigation in two healthy individuals who received two doses of inactivated whole-virus COVID-19 vaccines, followed by a single heterologous boost vaccination after 7 months with an mRNA vaccine candidate (LPP-Spike-mRNA) developed by Stemirna Therapeutics. Following the boost, Spike-specific antibody (Ab), memory B cell and T cell responses were significantly increased. These findings indicate that a heterologous immunization strategy combining inactivated and mRNA vaccines can generate robust vaccine responses and therefore provide a rational and effective vaccination regimen.

17.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-492659.v1

ABSTRACT

Ten emerging SARS-CoV-2 variants—B.1.1.298, B.1.1.7, B.1.351, P.1, P.2, B.1.429, B.1.525, B.1.526-1, B.1.526-2, B.1.1.318—and seven corresponding single amino acid mutations in the receptor-binding domain were examined using SARS-CoV-2 pseudovirus. The results indicate that the current SARS-CoV-2 variants do not increase infectivity among humans. The K417N/T, N501Y, or E484K-carrying variants exhibited increased abilities to infect to mouse ACE2-overexpressing cells. The activities of Furin, TMPRSS2, and cathepsin L were increased against most of the variants. RBD amino acid mutations comprising K417T/N, L452R, Y453F, S477N, E484K, and N501Y caused significant immune escape from 11 of 13 monoclonal antibodies. However, the resistance to neutralization by convalescent serum or vaccines was mainly caused by the E484K mutation, while the neutralization of E484K-carrying variants was decreased by 1.1–6.2-fold. The convalescent serum from B.1.1.7- and B.1.351-infected patients neutralized the variants themselves better than other SARS-CoV-2 variants.

18.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-263301.v1

ABSTRACT

SARS-CoV-2 can infect many domestic animals, including dogs. Herein, we show that dog angiotensin converting enzyme 2 (dACE2) can bind to SARS-CoV-2 spike (S) protein receptor binding region (RBD), and that both pseudotyped and authentic SARS-CoV-2 can infect dACE2-expressing cells. we solved the crystal structure of RBD in complex with dACE2 and found that the total numbers of contact residues, contact atoms, hydrogen bonds and salt bridges at the binding interface in this complex are slightly fewer than those in the complex of the RBD and human ACE2 (hACE2). This result is consistent with the fact that the binding affinity of RBD to dACE2 is lower than that to hACE2. We further show that a few important mutations in the RBD binding interface play a pivotal role in the binding affinity of RBD to both dACE2 and hACE2, and need intense monitoring and controlling.

19.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.24.393629

ABSTRACT

Receptor recognition and subsequent membrane fusion are essential for the establishment of successful infection by SARS-CoV-2. Halting these steps can cure COVID-19. Here we have identified and characterized a potent human monoclonal antibody, HB27, that blocks SARS-CoV-2 attachment to its cellular receptor at sub-nM concentrations. Remarkably, HB27 can also prevent SARS-CoV-2 membrane fusion. Consequently, a single dose of HB27 conferred effective protection against SARS-CoV-2 in two established mouse models. Rhesus macaques showed no obvious adverse events when administrated with 10-fold of effective dose of HB27. Cryo-EM studies on complex of SARS-CoV-2 trimeric S with HB27 Fab reveal that three Fab fragments work synergistically to occlude SARS-CoV-2 from binding to ACE2 receptor. Binding of the antibody also restrains any further conformational changes of the RBD, possibly interfering with progression from the prefusion to the postfusion stage. These results suggest that HB27 is a promising candidate for immuno-therapies against COVID-19.

20.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.24.396671

ABSTRACT

Objective: The spike protein of SARS-CoV-2 has become the main target for antiviral and vaccine development. Despite its relevance, there is scarce information about its evolutionary traces. The aim of this study was to investigate the diversification patterns of the spike for each clade of SARS-CoV-2 through different approaches. Methods: Two thousand and one hundred sequences representing the seven clades of the SARS-CoV-2 were included. Patterns of genetic diversifications and nucleotide evolutionary rate were estimated for the spike genomic region. Results: The haplotype networks showed a star shape, where multiple haplotypes with few nucleotide differences diverge from a common ancestor. Four hundred seventy nine different haplotypes were defined in the seven analyzed clades. The main haplotype, named Hap-1, was the most frequent for clades G (54%), GH (54%), and GR (56%) and a different haplotype (named Hap-252) was the most important for clades L (63.3%), O (39.7%), S (51.7%), and V (70%). The evolutionary rate for the spike protein was estimated as 1.08 x 10-3 nucleotide substitutions/site/year. Moreover, the nucleotide evolutionary rate after eight months of pandemic was similar for each clade. Conclusions: In conclusion, the present evolutionary analysis is relevant since the spike protein of SARS-CoV-2 is the target for most therapeutic candidates; besides, changes in this protein could have consequences on viral transmission, response to antivirals and efficacy of vaccines. Moreover, the evolutionary characterization of clades improves knowledge of SARS-CoV-2 and deserves to be assessed in more detail since re-infection by different phylogenetic clades has been reported.

SELECTION OF CITATIONS
SEARCH DETAIL