Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Pediatrics ; 2022 May 18.
Article in English | MEDLINE | ID: covidwho-1855067

ABSTRACT

BACKGROUND AND OBJECTIVES: Limited post-authorization safety data for BNT-162b2 COVID-19 vaccination among children ages 5-11 years are available, particularly for the adverse event myocarditis, which has been detected in adolescents and young adults. We describe adverse events observed during the first 4 months of the US COVID-19 vaccination program in this age group. METHODS: We analyzed data from 3 US safety monitoring systems: v-safe, a voluntary smartphone-based system that monitors reactions and health effects; the Vaccine Adverse Events Reporting System (VAERS), the national spontaneous reporting system co-managed by CDC and FDA; and the Vaccine Safety Datalink (VSD), an active surveillance system that monitors electronic health records for prespecified events, including myocarditis. RESULTS: Among 48,795 children ages 5-11 years enrolled in v-safe, most reported reactions were mild-to-moderate, most frequently reported the day after vaccination, and were more common after dose 2. VAERS received 7,578 adverse event reports; 97% were non-serious. On review of 194 serious VAERS reports, 15 myocarditis cases were verified; 8 occurred in males after dose 2 (reporting rate 2.2 per million doses). In VSD, no safety signals were detected in weekly sequential monitoring after administration of 726,820 doses. CONCLUSIONS: Safety findings for BNT-162b2 vaccine from 3 US monitoring systems in children ages 5-11 years show that most reported adverse events were mild and no safety signals were observed in active surveillance. VAERS reporting rates of myocarditis after dose 2 in this age group were substantially lower than those observed among adolescents ages 12-15 years.

2.
JAMA Netw Open ; 5(4): e228879, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1801993

ABSTRACT

Importance: Postauthorization monitoring of vaccines in a large population may detect rare adverse events not identified in clinical trials such as Guillain-Barré syndrome (GBS), which has a background rate of 1 to 2 per 100 000 person-years. Objective: To describe cases and incidence of GBS following COVID-19 vaccination and assess the risk of GBS after vaccination for Ad.26.COV2.S (Janssen) and mRNA vaccines. Design, Setting, and Participants: This cohort study used surveillance data from the Vaccine Safety Datalink at 8 participating integrated health care systems in the United States. There were 10 158 003 participants aged at least 12 years. Data analysis was performed from November 2021 to February 2022. Exposures: Ad.26.COV2.S, BNT162b2 (Pfizer-BioNTech), or mRNA-1273 (Moderna) COVID-19 vaccine, including mRNA vaccine doses 1 and 2, December 13, 2020, to November 13, 2021. Main Outcomes and Measures: GBS with symptom onset in the 1 to 84 days after vaccination, confirmed by medical record review and adjudication. Descriptive characteristics of confirmed cases, GBS incidence rates during postvaccination risk intervals after each type of vaccine compared with the background rate, rate ratios (RRs) comparing GBS incidence in the 1 to 21 vs 22 to 42 days postvaccination, and RRs directly comparing risk of GBS after Ad.26.COV2.S vs mRNA vaccination, using Poisson regression adjusted for age, sex, race and ethnicity, site, and calendar day. Results: From December 13, 2020, through November 13, 2021, 15 120 073 doses of COVID-19 vaccines were administered to 7 894 989 individuals (mean [SE] age, 46.5 [0.02] years; 8 138 318 doses received [53.8%] by female individuals; 3 671 199 doses received [24.3%] by Hispanic or Latino individuals, 2 215 064 doses received [14.7%] by Asian individuals, 6 266 424 doses received [41.4%] by White individuals), including 483 053 Ad.26.COV2.S doses, 8 806 595 BNT162b2 doses, and 5 830 425 mRNA-1273 doses. Eleven cases of GBS after Ad.26.COV2.S were confirmed. The unadjusted incidence rate of GBS per 100 000 person-years in the 1 to 21 days after Ad.26.COV2.S was 32.4 (95% CI, 14.8-61.5), significantly higher than the background rate, and the adjusted RR in the 1 to 21 vs 22 to 42 days following Ad.26.COV2.S was 6.03 (95% CI, 0.79-147.79). Thirty-six cases of GBS after mRNA vaccines were confirmed. The unadjusted incidence rate per 100 000 person-years in the 1 to 21 days after mRNA vaccines was 1.3 (95% CI, 0.7-2.4) and the adjusted RR in the 1 to 21 vs 22 to 42 days following mRNA vaccines was 0.56 (95% CI, 0.21-1.48). In a head-to-head comparison of Ad.26.COV2.S vs mRNA vaccines, the adjusted RR was 20.56 (95% CI, 6.94-64.66). Conclusions and Relevance: In this cohort study of COVID-19 vaccines, the incidence of GBS was elevated after receiving the Ad.26.COV2.S vaccine. Surveillance is ongoing.


Subject(s)
COVID-19 , Guillain-Barre Syndrome , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Cohort Studies , Female , Guillain-Barre Syndrome/epidemiology , Guillain-Barre Syndrome/etiology , Humans , Incidence , Middle Aged , United States/epidemiology , Vaccination/adverse effects , Vaccines, Synthetic
3.
Vaccine ; 40(22): 3064-3071, 2022 May 11.
Article in English | MEDLINE | ID: covidwho-1778493

ABSTRACT

The Vaccine Safety Datalink (VSD) conducts active surveillance and vaccine safety research studies. Since the start of the U.S. COVID-19 vaccination program, the VSD has conducted near real-time safety surveillance of COVID-19 vaccines using Rapid Cycle Analysis. VSD investigators developed an internal dashboard to facilitate visualization and rapid reviews of large weekly automated vaccine safety surveillance data. Dashboard development and maintenance was informed by vaccine surveillance data users and vaccine safety partners. Key metrics include population demographics, vaccine uptake, pre-specified safety outcomes, sequential analyses results, and descriptive data on potential vaccine safety signals. Dashboard visualizations are used to provide situational awareness on dynamic vaccination coverage and the status of multiple safety analyses conducted among the VSD population. This report describes the development and implementation of the internal VSD COVID-19 Vaccine Dashboard, including metrics used to develop the dashboard, which may have application across various other public health settings.


Subject(s)
COVID-19 , Vaccines , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Vaccination
4.
MMWR Morb Mortal Wkly Rep ; 71(11): 416-421, 2022 Mar 18.
Article in English | MEDLINE | ID: covidwho-1744554

ABSTRACT

The mRNA-1273 (Moderna) COVID-19 vaccine is a lipid nanoparticle-encapsulated, nucleoside-modified mRNA vaccine encoding the stabilized prefusion spike glycoprotein of SARS-CoV-2, the virus that causes COVID-19. During December 2020, the vaccine was granted Emergency Use Authorization (EUA) by the Food and Drug Administration (FDA), and the Advisory Committee on Immunization Practices (ACIP) issued an interim recommendation for use among persons aged ≥18 years (1), which was adopted by CDC. During December 19, 2020-January 30, 2022, approximately 204 million doses of Moderna COVID-19 vaccine were administered in the United States (2) as a primary series of 2 intramuscular doses (100 µg [0.5 mL] each) 4 weeks apart. On January 31, 2022, FDA approved a Biologics License Application (BLA) for use of the Moderna COVID-19 vaccine (Spikevax, ModernaTX, Inc.) in persons aged ≥18 years (3). On February 4, 2022, the ACIP COVID-19 Vaccines Work Group conclusions regarding recommendations for the use of the Moderna COVID-19 vaccine were presented to ACIP at a public meeting. The Work Group's deliberations were based on the Evidence to Recommendation (EtR) Framework,* which incorporates the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach† to rank evidence quality. In addition to initial clinical trial data, ACIP considered new information gathered in the 12 months since issuance of the interim recommendations, including additional follow-up time in the clinical trial, real-world vaccine effectiveness studies, and postauthorization vaccine safety monitoring. ACIP also considered comparisons of mRNA vaccine effectiveness and safety in real-world settings when first doses were administered 8 weeks apart instead of the original intervals used in clinical trials (3 weeks for BNT162b2 [Pfizer-BioNTech] COVID-19 vaccine and 4 weeks for Moderna COVID-19 vaccine). Based on this evidence, CDC has provided guidance that an 8-week interval might be optimal for some adolescents and adults. The additional information gathered since the issuance of the interim recommendations increased certainty that the benefits of preventing symptomatic and asymptomatic SARS-CoV-2 infection, hospitalization, and death outweigh vaccine-associated risks of the Moderna COVID-19 vaccine. On February 4, 2022, ACIP modified its interim recommendation to a standard recommendation§ for use of the fully licensed Moderna COVID-19 vaccine in persons aged ≥18 years.


Subject(s)
/administration & dosage , Advisory Committees , Centers for Disease Control and Prevention, U.S. , Health Planning Guidelines , Immunization Schedule , Adult , Humans , Middle Aged , United States
6.
MMWR Morb Mortal Wkly Rep ; 71(1): 26-30, 2022 Jan 07.
Article in English | MEDLINE | ID: covidwho-1606176

ABSTRACT

COVID-19 vaccines are recommended during pregnancy to prevent severe maternal morbidity and adverse birth outcomes; however, vaccination coverage among pregnant women has been low (1). Concerns among pregnant women regarding vaccine safety are a persistent barrier to vaccine acceptance during pregnancy. Previous studies of maternal COVID-19 vaccination and birth outcomes have been limited by small sample size (2) or lack of an unvaccinated comparison group (3). In this retrospective cohort study of live births from eight Vaccine Safety Datalink (VSD) health care organizations, risks for preterm birth (<37 weeks' gestation) and small-for-gestational-age (SGA) at birth (birthweight <10th percentile for gestational age) after COVID-19 vaccination (receipt of ≥1 COVID-19 vaccine doses) during pregnancy were evaluated. Risks for preterm and SGA at birth among vaccinated and unvaccinated pregnant women were compared, accounting for time-dependent vaccine exposures and propensity to be vaccinated. Single-gestation pregnancies with estimated start or last menstrual period during May 17-October 24, 2020, were eligible for inclusion. Among 46,079 pregnant women with live births and gestational age available, 10,064 (21.8%) received ≥1 COVID-19 vaccine doses during pregnancy and during December 15, 2020-July 22, 2021; nearly all (9,892; 98.3%) were vaccinated during the second or third trimester. COVID-19 vaccination during pregnancy was not associated with preterm birth (adjusted hazard ratio [aHR] = 0.91; 95% CI = 0.82-1.01). Among 40,627 live births with birthweight available, COVID-19 vaccination in pregnancy was not associated with SGA at birth (aHR = 0.95; 95% CI = 0.87-1.03). Results consistently showed no increased risk when stratified by mRNA COVID-19 vaccine dose, or by second or third trimester vaccination, compared with risk among unvaccinated pregnant women. Because of the small number of first-trimester exposures, aHRs for first-trimester vaccination could not be calculated. These data add to the evidence supporting the safety of COVID-19 vaccination during pregnancy. To reduce the risk for severe COVID-19-associated illness, CDC recommends COVID-19 vaccination for women who are pregnant, recently pregnant (including those who are lactating), who are trying to become pregnant now, or who might become pregnant in the future (4).


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Infant, Premature , Infant, Small for Gestational Age , Premature Birth/epidemiology , Adolescent , Adult , Cohort Studies , Female , Humans , Middle Aged , Patient Safety , Pregnancy , Prevalence , Retrospective Studies , Risk Assessment , SARS-CoV-2/immunology , United States/epidemiology , Young Adult
7.
Vaccine ; 40(5): 752-756, 2022 01 31.
Article in English | MEDLINE | ID: covidwho-1586268

ABSTRACT

BACKGROUND: The Vaccine Safety Datalink (VSD) uses vaccination data from electronic health records (EHR) at eight integrated health systems to monitor vaccine safety. Accurate capture of data from vaccines administered outside of the health system is critical for vaccine safety research, especially for COVID-19 vaccines, where many are administered in non-traditional settings. However, timely access and inclusion of data from Immunization Information Systems (IIS) into VSD safety assessments is not well understood. METHODS: We surveyed the eight data-contributing VSD sites to assess: 1) status of sending data to IIS; 2) status of receiving data from IIS; and 3) integration of IIS data into the site EHR. Sites reported separately for COVID-19 vaccination to capture any differences in capacity to receive and integrate data on COVID-19 vaccines versus other vaccines. RESULTS: All VSD sites send data to and receive data from their state IIS. All eight sites (100%) routinely integrate IIS data for COVID-19 vaccines into VSD research studies. Six sites (75%) also routinely integrate all other vaccination data; two sites integrate data from IIS following a reconciliation process, which can result in delays to integration into VSD datasets. CONCLUSIONS: COVID-19 vaccines are being administered in a variety of non-traditional settings, where IIS are commonly used as centralized reporting systems. All eight VSD sites receive and integrate COVID-19 vaccine data from IIS, which positions the VSD well for conducting quality assessments of vaccine safety. Efforts to improve the timely receipt of all vaccination data will improve capacity to conduct vaccine safety assessments within the VSD.


Subject(s)
COVID-19 , Vaccines , COVID-19 Vaccines , Humans , Immunization , Information Systems , SARS-CoV-2 , United States , Vaccination/adverse effects , Vaccines/adverse effects
8.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-294893

ABSTRACT

Importance: Post-authorization monitoring of vaccines in a large population can detect rare adverse events not identified in clinical trials including Guillain-Barré syndrome (GBS). GBS has a background rate of 1-2 per 100,000 person-years. Objective: To 1) describe cases and incidence of GBS following COVID-19 vaccination, and 2) assess the risk of GBS after vaccination for Ad.26.COV2.S (Janssen) and mRNA vaccines. Design: Interim analysis of surveillance data from the Vaccine Safety Datalink. Setting: Eight participating integrated healthcare systems in the United States. Participants: 10,158,003 individuals aged ≥12 years. Exposures: Receipt of Ad.26.COV2.S, BNT162b2 (Pfizer-BioNTech), or mRNA-1273 (Moderna) COVID-19 vaccine. Main Outcomes and Measures: GBS with symptom onset in the 1-84 days after vaccination as confirmed by medical record review and adjudication. Descriptive characteristics of confirmed cases, GBS incidence rates during postvaccination risk intervals after each type of vaccine compared to the background rate, rate ratios (RRs) comparing GBS incidence in the 1-21 vs. 22-42 days postvaccination, and RRs directly comparing risk of GBS after Ad.26.COV2.S vs. mRNA vaccination, using Poisson regression adjusted for age, sex, race/ethnicity, site, and calendar day. Results: From December 13, 2020 through November 13, 2021, 14,723,318 doses of COVID-19 vaccines were administered, including 467,126 Ad.26.COV2.S, 8,573,823 BNT162b2, and 5,682,369 mRNA-1273 doses. Eleven cases of GBS after Ad.26.COV2.S were confirmed. The unadjusted incidence rate of confirmed cases of GBS per 100,000 person-years in the 1-21 days after Ad.26.COV2.S was 34.6 (95% confidence interval [CI]: 15.8-65.7), significantly higher than the background rate, and the adjusted RR in the 1-21 vs. 22-42 days following Ad.26.COV2.S was 6.03 (95% CI: 0.79-147.79). Thirty-four cases of GBS after mRNA vaccines were confirmed. The unadjusted incidence rate of confirmed cases per 100,000 person-years in the 1-21 days after mRNA vaccines was 1.4 (95% CI: 0.7-2.5) and the adjusted RR in the 1-21 vs. 22-42 days following mRNA vaccines was 0.56 (95% CI: 0.21-1.48). In a head-to-head comparison of Ad.26.COV2.S vs. mRNA vaccines, the adjusted RR was 20.56 (95% CI: 6.94-64.66). Conclusions and Relevance: In this interim analysis of surveillance data of COVID-19 vaccines, the incidence of GBS was elevated after Ad.26.COV2.S. Surveillance is ongoing.

9.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-293534

ABSTRACT

Importance: Post-authorization monitoring of vaccines in a large population can detect rare adverse events not identified in clinical trials including Guillain-Barré syndrome (GBS). GBS has a background rate of 1-2 per 100,000 person-years. Objective: To 1) describe cases and incidence of GBS following COVID-19 vaccination, and 2) assess the risk of GBS after vaccination for Ad.26.COV2.S (Janssen) and mRNA vaccines. Design: Interim analysis of surveillance data from the Vaccine Safety Datalink. Setting: Eight participating integrated healthcare systems in the United States. Participants: 10,158,003 individuals aged ≥12 years. Exposures: Receipt of Ad.26.COV2.S, BNT162b2 (Pfizer-BioNTech), or mRNA-1273 (Moderna) COVID-19 vaccine. Main Outcomes and Measures: GBS with symptom onset in the 1-84 days after vaccination as confirmed by medical record review and adjudication. Descriptive characteristics of confirmed cases, GBS incidence rates during postvaccination risk intervals after each type of vaccine compared to the background rate, rate ratios (RRs) comparing GBS incidence in the 1-21 vs. 22-42 days postvaccination, and RRs directly comparing risk of GBS after Ad.26.COV2.S vs. mRNA vaccination, using Poisson regression adjusted for age, sex, race/ethnicity, site, and calendar day. Results: From December 13, 2020 through November 13, 2021, 14,723,318 doses of COVID-19 vaccines were administered, including 467,126 Ad.26.COV2.S, 8,573,823 BNT162b2, and 5,682,369 mRNA-1273 doses. Eleven cases of GBS after Ad.26.COV2.S were confirmed. The unadjusted incidence rate of confirmed cases of GBS per 100,000 person-years in the 1-21 days after Ad.26.COV2.S was 34.6 (95% confidence interval [CI]: 15.8-65.7), significantly higher than the background rate, and the adjusted RR in the 1-21 vs. 22-42 days following Ad.26.COV2.S was 6.03 (95% CI: 0.79-147.79). Thirty-four cases of GBS after mRNA vaccines were confirmed. The unadjusted incidence rate of confirmed cases per 100,000 person-years in the 1-21 days after mRNA vaccines was 1.4 (95% CI: 0.7-2.5) and the adjusted RR in the 1-21 vs. 22-42 days following mRNA vaccines was 0.56 (95% CI: 0.21-1.48). In a head-to-head comparison of Ad.26.COV2.S vs. mRNA vaccines, the adjusted RR was 20.56 (95% CI: 6.94-64.66). Conclusions and Relevance: In this interim analysis of surveillance data of COVID-19 vaccines, the incidence of GBS was elevated after Ad.26.COV2.S. Surveillance is ongoing.

10.
Front Psychiatry ; 12: 703685, 2021.
Article in English | MEDLINE | ID: covidwho-1518550

ABSTRACT

Over 10 million individuals pass through U.S. detention centers on an annual basis, with nearly two-thirds meeting criteria for drug dependence/abuse. Despite proven efficacy, treatment with medications for opioid use disorder (MOUD) is underutilized in jail settings-a gap that could be addressed using telemedicine. Here we describe a new program of telemedicine-based clinical provision of new/continuing buprenorphine treatment for individuals detained in a rural jail. Implementation objectives were completed between January and August 2020, and patient encounters were conducted between August 2020 and February 2021. We established (i) telemedicine hardware/software capability; (ii) a screening process; (iii) buprenorphine administration methods; (iv) necessary medical release procedures; (v) telemedicine encounter coordination and medication prescription procedures; and (vi) a research platform. Seven incarcerated patients have been treated, two of whom were referred from community treatment. Patients were mostly male (71%), non-Hispanic White (86%), and averaged 33 years old. All patients tested positive for an opioid upon intake and began/continued buprenorphine treatment in the jail. Average time to first MOUD appointment was 9 days and patients were maintained in treatment an average 21 days. Referrals for continuing community treatment were offered to all patients prior to discharge. We report successful implementation of telemedicine MOUD in a rural detention center, with treatment engagement and initiation occurring prior to the high-risk period of discharge. The fact that this program was launched during the height of the pandemic highlights the flexibility of telemedicine-based buprenorphine treatment. Challenges and obstacles to implementation of buprenorphine treatment in a correctional system are discussed.

11.
MMWR Morb Mortal Wkly Rep ; 70(43): 1520-1524, 2021 Oct 29.
Article in English | MEDLINE | ID: covidwho-1498054

ABSTRACT

By September 21, 2021, an estimated 182 million persons in the United States were fully vaccinated against COVID-19.* Clinical trials indicate that Pfizer-BioNTech (BNT162b2), Moderna (mRNA-1273), and Janssen (Johnson & Johnson; Ad.26.COV2.S) vaccines are effective and generally well tolerated (1-3). However, daily vaccination rates have declined approximately 78% since April 13, 2021†; vaccine safety concerns have contributed to vaccine hesitancy (4). A cohort study of 19,625 nursing home residents found that those who received an mRNA vaccine (Pfizer-BioNTech or Moderna) had lower all-cause mortality than did unvaccinated residents (5), but no studies comparing mortality rates within the general population of vaccinated and unvaccinated persons have been conducted. To assess mortality not associated with COVID-19 (non-COVID-19 mortality) after COVID-19 vaccination in a general population setting, a cohort study was conducted during December 2020-July 2021 among approximately 11 million persons enrolled in seven Vaccine Safety Datalink (VSD) sites.§ After standardizing mortality rates by age and sex, this study found that COVID-19 vaccine recipients had lower non-COVID-19 mortality than did unvaccinated persons. After adjusting for demographic characteristics and VSD site, this study found that adjusted relative risk (aRR) of non-COVID-19 mortality for the Pfizer-BioNTech vaccine was 0.41 (95% confidence interval [CI] = 0.38-0.44) after dose 1 and 0.34 (95% CI = 0.33-0.36) after dose 2. The aRRs of non-COVID-19 mortality for the Moderna vaccine were 0.34 (95% CI = 0.32-0.37) after dose 1 and 0.31 (95% CI = 0.30-0.33) after dose 2. The aRR after receipt of the Janssen vaccine was 0.54 (95% CI = 0.49-0.59). There is no increased risk for mortality among COVID-19 vaccine recipients. This finding reinforces the safety profile of currently approved COVID-19 vaccines in the United States.


Subject(s)
COVID-19 Vaccines/administration & dosage , Mortality/trends , Vaccination/statistics & numerical data , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19/prevention & control , Child , Delivery of Health Care, Integrated , Female , Humans , Male , Middle Aged , Risk , United States/epidemiology , Young Adult
12.
JAMA ; 326(14): 1390-1399, 2021 10 12.
Article in English | MEDLINE | ID: covidwho-1490611

ABSTRACT

Importance: Safety surveillance of vaccines against COVID-19 is critical to ensure safety, maintain trust, and inform policy. Objectives: To monitor 23 serious outcomes weekly, using comprehensive health records on a diverse population. Design, Setting, and Participants: This study represents an interim analysis of safety surveillance data from Vaccine Safety Datalink. The 10 162 227 vaccine-eligible members of 8 participating US health plans were monitored with administrative data updated weekly and supplemented with medical record review for selected outcomes from December 14, 2020, through June 26, 2021. Exposures: Receipt of BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) COVID-19 vaccination, with a risk interval of 21 days for individuals after vaccine dose 1 or 2 compared with an interval of 22 to 42 days for similar individuals after vaccine dose 1 or 2. Main Outcomes and Measures: Incidence of serious outcomes, including acute myocardial infarction, Bell palsy, cerebral venous sinus thrombosis, Guillain-Barré syndrome, myocarditis/pericarditis, pulmonary embolism, stroke, and thrombosis with thrombocytopenia syndrome. Incidence of events that occurred among vaccine recipients 1 to 21 days after either dose 1 or 2 of a messenger RNA (mRNA) vaccine was compared with that of vaccinated concurrent comparators who, on the same calendar day, had received their most recent dose 22 to 42 days earlier. Rate ratios (RRs) were estimated by Poisson regression, adjusted for age, sex, race and ethnicity, health plan, and calendar day. For a signal, a 1-sided P < .0048 was required to keep type I error below .05 during 2 years of weekly analyses. For 4 additional outcomes, including anaphylaxis, only descriptive analyses were conducted. Results: A total of 11 845 128 doses of mRNA vaccines (57% BNT162b2; 6 175 813 first doses and 5 669 315 second doses) were administered to 6.2 million individuals (mean age, 49 years; 54% female individuals). The incidence of events per 1 000 000 person-years during the risk vs comparison intervals for ischemic stroke was 1612 vs 1781 (RR, 0.97; 95% CI, 0.87-1.08); for appendicitis, 1179 vs 1345 (RR, 0.82; 95% CI, 0.73-0.93); and for acute myocardial infarction, 935 vs 1030 (RR, 1.02; 95% CI, 0.89-1.18). No vaccine-outcome association met the prespecified requirement for a signal. Incidence of confirmed anaphylaxis was 4.8 (95% CI, 3.2-6.9) per million doses of BNT162b2 and 5.1 (95% CI, 3.3-7.6) per million doses of mRNA-1273. Conclusions and Relevance: In interim analyses of surveillance of mRNA COVID-19 vaccines, incidence of selected serious outcomes was not significantly higher 1 to 21 days postvaccination compared with 22 to 42 days postvaccination. While CIs were wide for many outcomes, surveillance is ongoing.


Subject(s)
COVID-19 Vaccines/adverse effects , Adolescent , Adult , Aged , Anaphylaxis/epidemiology , Anaphylaxis/etiology , Child , Female , Follow-Up Studies , Humans , Male , Middle Aged , Myocarditis/epidemiology , Myocarditis/etiology , Public Health Surveillance , Time Factors , Vaccines, Synthetic/adverse effects , Young Adult
13.
JAMA Pediatr ; 176(1): 68-77, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-1453520

ABSTRACT

Importance: The COVID-19 pandemic has affected routine vaccine delivery in the US and globally. The magnitude of these disruptions and their association with childhood vaccination coverage are unclear. Objectives: To compare trends in pediatric vaccination before and during the pandemic and to evaluate the proportion of children up to date (UTD) with vaccinations by age, race, and ethnicity. Design, Setting, and Participants: This surveillance study used a prepandemic-postpandemic control design with data from 8 health systems in California, Oregon, Washington, Colorado, Minnesota, and Wisconsin in the Vaccine Safety Datalink. Children from age groups younger than 24 months and 4 to 6, 11 to 13, and 16 to 18 years were included if they had at least 1 week of health system enrollment from January 5, 2020, through October 3, 2020, over periods before the US COVID-19 pandemic (January 5, 2020, through March 14, 2020), during age-limited preventive care (March 15, 2020, through May 16, 2020), and during expanded primary care (May 17, 2020, through October 3, 2020). These individuals were compared with those enrolled during analogous weeks in 2019. Exposures: This study evaluated UTD status among children reaching specific ages in February, May, and September 2020, compared with those reaching these ages in 2019. Main Outcomes and Measures: Weekly vaccination rates for routine age-specific vaccines and the proportion of children UTD for all age-specific recommended vaccines. Results: Of 1 399 708 children in 2019 and 1 402 227 in 2020, 1 371 718 were female (49.0%) and 1 429 979 were male (51.0%); 334 216 Asian individuals (11.9%), 900 226 were Hispanic individuals (32.1%), and 201 619 non-Hispanic Black individuals (7.2%). Compared with the prepandemic period and 2019, the age-limited preventive care period was associated with lower weekly vaccination rates, with ratios of rate ratios of 0.82 (95% CI, 0.80-0.85) among those younger than 24 months, 0.18 (95% CI, 0.16-0.20) among those aged 4 to 6 years, 0.16 (95% CI, 0.14-0.17) among those aged 11 to 13 years, and 0.10 (95% CI, 0.08-0.13) among those aged 16 to 18 years. Vaccination rates during expanded primary care remained lower for most ages (ratios of rate ratios: <24 months, 0.96 [95% CI, 0.93-0.98]; 11-13 years, 0.81 [95% CI, 0.76-0.86]; 16-18 years, 0.57 [95% CI, 0.51-0.63]). In September 2020, 74% (95% CI, 73%-76%) of infants aged 7 months and 57% (95% CI, 56%-58%) of infants aged 18 months were UTD vs 81% (95% CI, 80%-82%) and 61% (95% CI, 60%-62%), respectively, in September 2019. The proportion UTD was lowest in non-Hispanic Black children across most age groups, both during and prior to the COVID-19 pandemic (eg, in May 2019, 70% [95% CI, 64%-75%] of non-Hispanic Black infants aged 7 months were UTD vs 82% [95% CI, 81%-83%] in all infants aged 7 months combined). Conclusions and Relevance: As of September 2020, childhood vaccination rates and the proportion who were UTD remained lower than 2019 levels. Interventions are needed to promote catch-up vaccination, particularly in populations at risk for underimmunization.


Subject(s)
COVID-19/epidemiology , Vaccination Coverage/statistics & numerical data , Vaccination/statistics & numerical data , Vaccines/administration & dosage , Child , Child Health Services/organization & administration , Female , Humans , Immunization Programs/statistics & numerical data , Male , Time Factors
14.
JAMA ; 326(14): 1390-1399, 2021 10 12.
Article in English | MEDLINE | ID: covidwho-1391514

ABSTRACT

Importance: Safety surveillance of vaccines against COVID-19 is critical to ensure safety, maintain trust, and inform policy. Objectives: To monitor 23 serious outcomes weekly, using comprehensive health records on a diverse population. Design, Setting, and Participants: This study represents an interim analysis of safety surveillance data from Vaccine Safety Datalink. The 10 162 227 vaccine-eligible members of 8 participating US health plans were monitored with administrative data updated weekly and supplemented with medical record review for selected outcomes from December 14, 2020, through June 26, 2021. Exposures: Receipt of BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) COVID-19 vaccination, with a risk interval of 21 days for individuals after vaccine dose 1 or 2 compared with an interval of 22 to 42 days for similar individuals after vaccine dose 1 or 2. Main Outcomes and Measures: Incidence of serious outcomes, including acute myocardial infarction, Bell palsy, cerebral venous sinus thrombosis, Guillain-Barré syndrome, myocarditis/pericarditis, pulmonary embolism, stroke, and thrombosis with thrombocytopenia syndrome. Incidence of events that occurred among vaccine recipients 1 to 21 days after either dose 1 or 2 of a messenger RNA (mRNA) vaccine was compared with that of vaccinated concurrent comparators who, on the same calendar day, had received their most recent dose 22 to 42 days earlier. Rate ratios (RRs) were estimated by Poisson regression, adjusted for age, sex, race and ethnicity, health plan, and calendar day. For a signal, a 1-sided P < .0048 was required to keep type I error below .05 during 2 years of weekly analyses. For 4 additional outcomes, including anaphylaxis, only descriptive analyses were conducted. Results: A total of 11 845 128 doses of mRNA vaccines (57% BNT162b2; 6 175 813 first doses and 5 669 315 second doses) were administered to 6.2 million individuals (mean age, 49 years; 54% female individuals). The incidence of events per 1 000 000 person-years during the risk vs comparison intervals for ischemic stroke was 1612 vs 1781 (RR, 0.97; 95% CI, 0.87-1.08); for appendicitis, 1179 vs 1345 (RR, 0.82; 95% CI, 0.73-0.93); and for acute myocardial infarction, 935 vs 1030 (RR, 1.02; 95% CI, 0.89-1.18). No vaccine-outcome association met the prespecified requirement for a signal. Incidence of confirmed anaphylaxis was 4.8 (95% CI, 3.2-6.9) per million doses of BNT162b2 and 5.1 (95% CI, 3.3-7.6) per million doses of mRNA-1273. Conclusions and Relevance: In interim analyses of surveillance of mRNA COVID-19 vaccines, incidence of selected serious outcomes was not significantly higher 1 to 21 days postvaccination compared with 22 to 42 days postvaccination. While CIs were wide for many outcomes, surveillance is ongoing.


Subject(s)
COVID-19 Vaccines/adverse effects , Adolescent , Adult , Aged , Anaphylaxis/epidemiology , Anaphylaxis/etiology , Child , Female , Follow-Up Studies , Humans , Male , Middle Aged , Myocarditis/epidemiology , Myocarditis/etiology , Public Health Surveillance , Time Factors , Vaccines, Synthetic/adverse effects , Young Adult
15.
MMWR Morb Mortal Wkly Rep ; 69(38): 1355-1359, 2020 Sep 23.
Article in English | MEDLINE | ID: covidwho-1389855

ABSTRACT

Pregnant women might be at increased risk for severe coronavirus disease 2019 (COVID-19), possibly related to changes in their immune system and respiratory physiology* (1). Further, adverse birth outcomes, such as preterm delivery and stillbirth, might be more common among pregnant women infected with SARS-CoV-2, the virus that causes COVID-19 (2,3). Information about SARS-CoV-2 infection during pregnancy is rapidly growing; however, data on reasons for hospital admission, pregnancy-specific characteristics, and birth outcomes among pregnant women hospitalized with SARS-CoV-2 infections are limited. During March 1-May 30, 2020, as part of Vaccine Safety Datalink (VSD)† surveillance of COVID-19 hospitalizations, 105 hospitalized pregnant women with SARS-CoV-2 infection were identified, including 62 (59%) hospitalized for obstetric reasons (i.e., labor and delivery or another pregnancy-related indication) and 43 (41%) hospitalized for COVID-19 illness without an obstetric reason. Overall, 50 (81%) of 62 pregnant women with SARS-CoV-2 infection who were admitted for obstetric reasons were asymptomatic. Among 43 pregnant women hospitalized for COVID-19, 13 (30%) required intensive care unit (ICU) admission, six (14%) required mechanical ventilation, and one died from COVID-19. Prepregnancy obesity was more common (44%) among pregnant women hospitalized for COVID-19 than that among asymptomatic pregnant women hospitalized for obstetric reasons (31%). Likewise, the rate of gestational diabetes (26%) among pregnant women hospitalized for COVID-19 was higher than it was among women hospitalized for obstetric reasons (8%). Preterm delivery occurred in 15% of pregnancies among 93 women who delivered, and stillbirths (fetal death at ≥20 weeks' gestation) occurred in 3%. Antenatal counseling emphasizing preventive measures (e.g., use of masks, frequent hand washing, and social distancing) might help prevent COVID-19 among pregnant women,§ especially those with prepregnancy obesity and gestational diabetes, which might reduce adverse pregnancy outcomes.


Subject(s)
Coronavirus Infections/diagnosis , Coronavirus Infections/therapy , Hospitalization/statistics & numerical data , Pneumonia, Viral/diagnosis , Pneumonia, Viral/therapy , Pregnancy Complications, Infectious/therapy , Pregnancy Complications, Infectious/virology , Adolescent , Adult , COVID-19 , Coronavirus Infections/epidemiology , Female , Health Facilities/statistics & numerical data , Humans , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , Pregnancy , Pregnancy Complications, Infectious/epidemiology , Risk Assessment , Risk Factors , United States/epidemiology , Young Adult
16.
JAMA Netw Open ; 4(8): e2118487, 2021 08 02.
Article in English | MEDLINE | ID: covidwho-1375581

ABSTRACT

Importance: The demand for medications for opioid use disorder (MOUD) in rural US counties far outweighs their availability. Novel approaches to extend treatment capacity include telemedicine (TM) and mobile treatment on demand; however, their combined use has not been reported or evaluated. Objective: To evaluate the use of a TM mobile treatment unit (TM-MTU) to improve access to MOUD for individuals living in an underserved rural area. Design, Setting, and Participants: This quality improvement study evaluated data collected from adult outpatients with a diagnosis of OUD enrolled in the TM-MTU initiative from February 2019 (program inception) to June 2020. Program staff traveled to rural areas in a modified recreational vehicle equipped with medical, videoconferencing, and data collection devices. Patients were virtually connected with physicians based more than 70 miles (112 km) away. Data analysis was performed from June to October 2020. Intervention: Patients received buprenorphine prescriptions after initial teleconsultation and follow-up visits from a study physician specialized in addiction psychiatry and medicine. Main Outcomes and Measures: The primary outcome was 3-month treatment retention, and the secondary outcome was opioid-positive urine screens. Exploratory outcomes included use of other drugs and patients' travel distance to treatment. Results: A total of 118 patients were enrolled in treatment, of whom 94 were seen for follow-up treatment predominantly (at least 2 of 3 visits [>50%]) on the TM-MTU; only those 94 patients' data are considered in all analyses. The mean (SD) age of patients was 36.53 (9.78) years, 59 (62.77%) were men, 71 (75.53%) identified as White, and 90 (95.74%) were of non-Hispanic ethnicity. Fifty-five patients (58.51%) were retained in treatment by 3 months (90 days) after baseline. Opioid use was reduced by 32.84% at 3 months, compared with baseline, and was negatively associated with treatment duration (F = 12.69; P = .001). In addition, compared with the nearest brick-and-mortar treatment location, TM-MTU treatment was a mean of 6.52 miles (range, 0.10-58.70 miles) (10.43 km; range, 0.16-93.92 km) and a mean of 10 minutes (range, 1-49 minutes) closer for patients. Conclusions and Relevance: These data demonstrate the feasibility of combining TM with mobile treatment, with outcomes (retention and opioid use) similar to those obtained from office-based TM MOUD programs. By implementing a traveling virtual platform, this clinical paradigm not only helps fill the void of rural MOUD practitioners but also facilitates access to underserved populations who are less likely to reach traditional medical settings, with critical relevance in the context of the COVID-19 pandemic.


Subject(s)
Buprenorphine/therapeutic use , COVID-19 , Opiate Substitution Treatment , Opioid-Related Disorders/drug therapy , Pandemics , Rural Population , Telemedicine , Adult , Analgesics, Opioid , Female , Humans , Male , Middle Aged , SARS-CoV-2
17.
MMWR Morb Mortal Wkly Rep ; 70(27): 977-982, 2021 Jul 09.
Article in English | MEDLINE | ID: covidwho-1302822

ABSTRACT

In December 2020, the Food and Drug Administration (FDA) issued Emergency Use Authorizations (EUAs) for the Pfizer-BioNTech COVID-19 (BNT162b2) vaccine and the Moderna COVID-19 (mRNA-1273) vaccine,† and the Advisory Committee on Immunization Practices (ACIP) issued interim recommendations for their use in persons aged ≥16 years and ≥18 years, respectively.§ In May 2021, FDA expanded the EUA for the Pfizer-BioNTech COVID-19 vaccine to include adolescents aged 12-15 years; ACIP recommends that all persons aged ≥12 years receive a COVID-19 vaccine. Both Pfizer-BioNTech and Moderna vaccines are mRNA vaccines encoding the stabilized prefusion spike glycoprotein of SARS-CoV-2, the virus that causes COVID-19. Both mRNA vaccines were authorized and recommended as a 2-dose schedule, with second doses administered 21 days (Pfizer-BioNTech) or 28 days (Moderna) after the first dose. After reports of myocarditis and pericarditis in mRNA vaccine recipients,¶ which predominantly occurred in young males after the second dose, an ACIP meeting was rapidly convened to review reported cases of myocarditis and pericarditis and discuss the benefits and risks of mRNA COVID-19 vaccination in the United States. Myocarditis is an inflammation of the heart muscle; if it is accompanied by pericarditis, an inflammation of the thin tissue surrounding the heart (the pericardium), it is referred to as myopericarditis. Hereafter, myocarditis is used to refer to myocarditis, pericarditis, or myopericarditis. On June 23, 2021, after reviewing available evidence including that for risks of myocarditis, ACIP determined that the benefits of using mRNA COVID-19 vaccines under the FDA's EUA clearly outweigh the risks in all populations, including adolescents and young adults. The EUA has been modified to include information on myocarditis after receipt of mRNA COVID-19 vaccines. The EUA fact sheets should be provided before vaccination; in addition, CDC has developed patient and provider education materials about the possibility of myocarditis and symptoms of concern, to ensure prompt recognition and management of myocarditis.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Immunization/standards , Myocarditis/epidemiology , Practice Guidelines as Topic , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects , Adolescent , Adult , Adverse Drug Reaction Reporting Systems , Advisory Committees , COVID-19/epidemiology , COVID-19/prevention & control , Centers for Disease Control and Prevention, U.S. , Child , Female , Humans , Male , United States/epidemiology , Young Adult
18.
MMWR Morb Mortal Wkly Rep ; 70(24): 895-899, 2021 Jun 18.
Article in English | MEDLINE | ID: covidwho-1278794

ABSTRACT

COVID-19 vaccines are critical for ending the COVID-19 pandemic; however, current data about vaccination coverage and safety in pregnant women are limited. Pregnant women are at increased risk for severe illness and death from COVID-19 compared with nonpregnant women of reproductive age, and are at risk for adverse pregnancy outcomes, such as preterm birth (1-4). Pregnant women are eligible for and can receive any of the three COVID-19 vaccines available in the United States via Emergency Use Authorization.* Data from Vaccine Safety Datalink (VSD), a collaboration between CDC and multiple integrated health systems, were analyzed to assess receipt of ≥1 dose (first or second dose of the Pfizer-BioNTech or Moderna vaccines or a single dose of the Janssen [Johnson & Johnson] vaccine) of any COVID-19 vaccine during pregnancy, receipt of first dose of a 2-dose COVID-19 vaccine (initiation), or completion of a 1- or 2-dose COVID-19 vaccination series. During December 14, 2020-May 8, 2021, a total of 135,968 pregnant women were identified, 22,197 (16.3%) of whom had received ≥1 dose of a vaccine during pregnancy. Among these 135,968 women, 7,154 (5.3%) had initiated and 15,043 (11.1%) had completed vaccination during pregnancy. Receipt of ≥1 dose of COVID-19 vaccine during pregnancy was highest among women aged 35-49 years (22.7%) and lowest among those aged 18-24 years (5.5%), and higher among non-Hispanic Asian (Asian) (24.7%) and non-Hispanic White (White) women (19.7%) than among Hispanic (11.9%) and non-Hispanic Black (Black) women (6.0%). Vaccination coverage increased among all racial and ethnic groups over the analytic period, likely because of increased eligibility for vaccination† and increased availability of vaccine over time. These findings indicate the need for improved outreach to and engagement with pregnant women, especially those from racial and ethnic minority groups who might be at higher risk for severe health outcomes because of COVID-19 (4). In addition, providing accurate and timely information about COVID-19 vaccination to health care providers, pregnant women, and women of reproductive age can improve vaccine confidence and coverage by ensuring optimal shared clinical decision-making.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Pregnant Women , Vaccination Coverage/statistics & numerical data , Adolescent , Adult , COVID-19/epidemiology , Delivery of Health Care, Integrated , Female , Humans , Middle Aged , Pregnancy , Pregnant Women/ethnology , United States/epidemiology , Young Adult
19.
Front Public Health ; 8: 557275, 2020.
Article in English | MEDLINE | ID: covidwho-1069760

ABSTRACT

Telemedicine is increasingly being used to treat patients with opioid use disorder (OUD). It has particular value in rural areas of the United States impacted by the opioid crisis as these areas have a shortage of trained addiction medicine providers. Patient satisfaction significantly impacts positive clinical outcomes in OUD treatment and thus is of great clinical interest. Yet little is known regarding patient satisfaction with the increasingly important platform of telemedicine-delivered medications for opioid use disorder (tMOUD). The goal of this review is to provide a summary of the existing literature regarding patient satisfaction with tMOUD. We also submit a novel survey based on an existing framework designed to assess tMOUD satisfaction, and present pilot data (N = 14) acquired from patients engaged in rural tMOUD care. Telemedicine provides a feasible method for delivering MOUD in rural areas, and our survey provides a useful assessment to measure patient satisfaction with tMOUD. In light of the pressing need for innovative and technology-driven solutions to the opioid epidemic (especially in light of the COVID-19 pandemic), future research should focus on the development and refinement of tools to assess the important implementation goal of patient satisfaction.


Subject(s)
Buprenorphine/therapeutic use , Narcotic Antagonists/therapeutic use , Opioid-Related Disorders/drug therapy , Patient Satisfaction , Telemedicine , Adult , Humans , Opiate Substitution Treatment , Opioid Epidemic , Rural Population , Surveys and Questionnaires , United States
SELECTION OF CITATIONS
SEARCH DETAIL