Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-333124

ABSTRACT

Viral CD8 + epitopes are generated by the cellular turnover of viral proteins, predominantly by the proteasome. Mutations located within viral epitopes can result in escape from memory T cells but the contribution of mutations in flanking regions of epitopes in SARS-CoV-2 has not been investigated. Focusing on two of the most dominant SARS-CoV-2 nucleoprotein CD8 + epitopes, we identified mutations in epitope flanking regions and investigated the contribution of these mutations to antigen processing and T cell activation using SARS-CoV-2 nucleoprotein transduced B cell lines and in vitro proteasomal processing of peptides. We found that decreased NP 9-17 -B*27:05 CD8 + T cell responses to the NP-Q7K mutation correlated with lower epitope surface expression, likely due to a lack of efficient epitope production by the proteasome, suggesting immune escape caused by this mutation. In contrast, NP-P6L and NP-D103N/Y mutations flanking the NP 9-17 -B*27:05 and NP 105-113 -B*07:02 epitopes, respectively, increased CD8 + T cell responses associated with enhanced epitope production by the proteasome. Our results provide evidence that SARS-CoV-2 mutations outside the epitope could have a significant impact on antigen processing and presentation, thereby contributing to escape from immunodominant T cell responses. Alternatively, mutations could enhance antigen processing and efficacy of T cell recognition, opening new avenues for improving future vaccine designs. One Sentence Summary Natural mutations in the flanking regions of known immunodominant SARS-CoV-2 nucleoprotein epitopes can decrease CD8 + T cell responses leading to partial escape.

2.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-309642

ABSTRACT

NP 105-113 -B*07:02 specific CD8 + T-cell responses are considered among the most dominant in SARS-CoV-2-infected individuals. We found strong association of this response with mild disease. Analysis of NP 105-113 -B*07:02 specific T-cell clones and single cell sequencing were performed concurrently, with functional avidity and anti-viral efficacy assessed using an in vitro SARS-CoV-2 infection system, and were correlated with TCR usage, transcriptome signature, and disease severity (acute N=77, convalescent N=52). We demonstrated a beneficial association of NP 105-113 -B*07:02 specific T-cells in COVID-19 disease progression, linked with expansion of T-cell precursors, high functional avidity and anti-viral effector function. Broad immune memory pools were narrowed post-infection but NP 105-113 -B*07:02 specific T-cells were maintained 6 months after infection with preserved anti-viral efficacy to the SARS-CoV-2 Victoria strain, as well as new Alpha, Beta and Gamma variants. Our data shows that NP 105-113 -B*07:02 specific T-cell responses associate with mild disease and high anti-viral efficacy, pointing to inclusion for future vaccine design.

3.
Nat Immunol ; 23(1): 50-61, 2022 01.
Article in English | MEDLINE | ID: covidwho-1545628

ABSTRACT

NP105-113-B*07:02-specific CD8+ T cell responses are considered among the most dominant in SARS-CoV-2-infected individuals. We found strong association of this response with mild disease. Analysis of NP105-113-B*07:02-specific T cell clones and single-cell sequencing were performed concurrently, with functional avidity and antiviral efficacy assessed using an in vitro SARS-CoV-2 infection system, and were correlated with T cell receptor usage, transcriptome signature and disease severity (acute n = 77, convalescent n = 52). We demonstrated a beneficial association of NP105-113-B*07:02-specific T cells in COVID-19 disease progression, linked with expansion of T cell precursors, high functional avidity and antiviral effector function. Broad immune memory pools were narrowed postinfection but NP105-113-B*07:02-specific T cells were maintained 6 months after infection with preserved antiviral efficacy to the SARS-CoV-2 Victoria strain, as well as Alpha, Beta, Gamma and Delta variants. Our data show that NP105-113-B*07:02-specific T cell responses associate with mild disease and high antiviral efficacy, pointing to inclusion for future vaccine design.


Subject(s)
HLA-B7 Antigen/immunology , Immunodominant Epitopes/immunology , Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , T-Lymphocytes, Cytotoxic/immunology , Aged , Amino Acid Sequence , Antibodies, Viral/immunology , Antibody Affinity/immunology , COVID-19/immunology , COVID-19/pathology , Cell Line, Transformed , Female , Gene Expression Profiling , Humans , Immunologic Memory/immunology , Male , Middle Aged , Receptors, Antigen, T-Cell/immunology , Severity of Illness Index , Vaccinia virus/genetics , Vaccinia virus/immunology , Vaccinia virus/metabolism
4.
iScience ; 24(11): 103353, 2021 Nov 19.
Article in English | MEDLINE | ID: covidwho-1509904

ABSTRACT

We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.

5.
Curr Opin Virol ; 50: 183-191, 2021 10.
Article in English | MEDLINE | ID: covidwho-1401390

ABSTRACT

Immunodominance is a complex and highly debated topic of T cell biology. The current SARS-CoV-2 pandemic has provided the opportunity to profile adaptive immune responses and determine molecular factors contributing to emerging responses towards immunodominant viral epitopes. Here, we discuss parameters that alter the dynamics of CD8 viral epitope processing, generation and T-cell responses, and how immunodominance counteracts viral immune escape mechanisms that develop in the context of emerging SARS-CoV-2 variants.


Subject(s)
Immunodominant Epitopes/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Antigen Presentation , Cytosol/metabolism , Humans , Proteasome Endopeptidase Complex/physiology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/physiology , T-Lymphocytes, Cytotoxic/immunology
6.
Nat Immunol ; 21(11): 1336-1345, 2020 11.
Article in English | MEDLINE | ID: covidwho-889210

ABSTRACT

The development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and therapeutics will depend on understanding viral immunity. We studied T cell memory in 42 patients following recovery from COVID-19 (28 with mild disease and 14 with severe disease) and 16 unexposed donors, using interferon-γ-based assays with peptides spanning SARS-CoV-2 except ORF1. The breadth and magnitude of T cell responses were significantly higher in severe as compared with mild cases. Total and spike-specific T cell responses correlated with spike-specific antibody responses. We identified 41 peptides containing CD4+ and/or CD8+ epitopes, including six immunodominant regions. Six optimized CD8+ epitopes were defined, with peptide-MHC pentamer-positive cells displaying the central and effector memory phenotype. In mild cases, higher proportions of SARS-CoV-2-specific CD8+ T cells were observed. The identification of T cell responses associated with milder disease will support an understanding of protective immunity and highlights the potential of including non-spike proteins within future COVID-19 vaccine design.


Subject(s)
Antigens, Viral/immunology , Betacoronavirus/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Immunologic Memory/immunology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Coronavirus Infections/prevention & control , Epitopes, T-Lymphocyte/immunology , Humans , Immunodominant Epitopes/immunology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , United Kingdom , Viral Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL