Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add filters

Year range
1.
PLoS One ; 17(1): e0262315, 2022.
Article in English | MEDLINE | ID: covidwho-1622359

ABSTRACT

BACKGROUND: The role of non-invasive ventilation (NIV) in severe COVID-19 remains a matter of debate. Therefore, the utilization and outcome of NIV in COVID-19 in an unbiased cohort was determined. AIM: The aim was to provide a detailed account of hospitalized COVID-19 patients requiring non-invasive ventilation during their hospital stay. Furthermore, differences of patients treated with NIV between the first and second wave are explored. METHODS: Confirmed COVID-19 cases of claims data of the Local Health Care Funds with non-invasive and/or invasive mechanical ventilation (MV) in the spring and autumn pandemic period in 2020 were comparable analysed. RESULTS: Nationwide cohort of 17.023 cases (median/IQR age 71/61-80 years, 64% male) 7235 (42.5%) patients primarily received IMV without NIV, 4469 (26.3%) patients received NIV without subsequent intubation, and 3472 (20.4%) patients had NIV failure (NIV-F), defined by subsequent endotracheal intubation. The proportion of patients who received invasive MV decreased from 75% to 37% during the second period. Accordingly, the proportion of patients with NIV exclusively increased from 9% to 30%, and those failing NIV increased from 9% to 23%. Median length of hospital stay decreased from 26 to 21 days, and duration of MV decreased from 11.9 to 7.3 days. The NIV failure rate decreased from 49% to 43%. Overall mortality increased from 51% versus 54%. Mortality was 44% with NIV-only, 54% with IMV and 66% with NIV-F with mortality rates steadily increasing from 62% in early NIV-F (day 1) to 72% in late NIV-F (>4 days). CONCLUSIONS: Utilization of NIV rapidly increased during the autumn period, which was associated with a reduced duration of MV, but not with overall mortality. High NIV-F rates are associated with increased mortality, particularly in late NIV-F.

2.
Crit Care Med ; 2022 Jan 12.
Article in English | MEDLINE | ID: covidwho-1621691

ABSTRACT

OBJECTIVES: Extracorporeal membrane oxygenation (ECMO) is a potentially lifesaving procedure in acute respiratory distress syndrome (ARDS) due to COVID-19. Previous studies have shown a high prevalence of clinically silent cerebral microbleeds in patients with COVID-19. Based on this fact, together with the hemotrauma and the requirement of therapeutic anticoagulation on ECMO support, we hypothesized an increased risk of intracranial hemorrhages (ICHs). We analyzed ICH occurrence rate, circumstances and clinical outcome in patients that received ECMO support due to COVID-19-induced ARDS in comparison to viral non-COVID-19-induced ARDS intracerebral hemorrhage. DESIGN: Multicenter, retrospective analysis between January 2010 and May 2021. SETTING: Three tertiary care ECMO centers in Germany and Switzerland. PATIENTS: Two-hundred ten ARDS patients on ECMO support (COVID-19, n = 142 vs viral non-COVID, n = 68). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Evaluation of ICH occurrence rate, parameters of coagulation and anticoagulation strategies, inflammation, and ICU survival. COVID-19 and non-COVID-19 ARDS patients showed comparable disease severity regarding Sequential Organ Failure Assessment score, while the oxygenation index before ECMO cannulation was higher in the COVID group (82 vs 65 mm Hg). Overall, ICH of any severity occurred in 29 of 142 COVID-19 patients (20%) versus four of 68 patients in the control ECMO group (6%). Fifteen of those 29 ICH events in the COVID-19 group were classified as major (52%) including nine fatal cases (9/29, 31%). In the control group, there was only one major ICH event (1/4, 25%). The adjusted subhazard ratio for the occurrence of an ICH in the COVID-19 group was 5.82 (97.5% CI, 1.9-17.8; p = 0.002). The overall ICU mortality in the presence of ICH of any severity was 88%. CONCLUSIONS: This retrospective multicenter analysis showed a six-fold increased adjusted risk for ICH and a 3.5-fold increased incidence of ICH in COVID-19 patients on ECMO. Prospective studies are needed to confirm this observation and to determine whether the bleeding risk can be reduced by adjusting anticoagulation strategies.

3.
Pneumo News ; 13(6): 30-34, 2021.
Article in German | MEDLINE | ID: covidwho-1588671
4.
Preprint | EuropePMC | ID: ppcovidwho-297003

ABSTRACT

Male sex belongs to one of the major risk factors for severe COVID-19 outcome. However, underlying mechanisms that could affect sex dependent disease outcome are yet unknown. Here, we identified the CYP19A1 gene encoding for the testosterone-to-estradiol metabolizing enzyme CYP19A1 (alias aromatase) as a male abundant host factor that contributes to worsened disease outcome in SARS-CoV-2 infected male hamsters. Pulmonary CYP19A1 transcription is further elevated upon viral infection in males correlating with reduced testosterone and increased estradiol levels. Dysregulated circulating sex hormone levels in male golden hamsters are associated with reduced lung function compared to females. Treatment of SARS-CoV-2 infected hamsters with letrozole, a clinically approved CYP19A1 inhibitor, supported recovery of dysregulated plasma sex hormone levels and was associated with improved lung function and health in male but not female animals compared to placebo controls. Whole human exome sequencing data analysis using a Machine Learning approach revealed a CYP19A1 activity increasing mutation being associated with the development of severe COVID-19 for men. In human autopsy-derived lungs CYP19A1 was expressed to higher levels in men who died of COVID-19, at a time point when most viral RNA was cleared. Our findings highlight the role of the lung as a yet unrecognized but critical organ regulating metabolic responses upon respiratory virus infection. Furthermore, inhibition of CYP19A1 by the clinically approved drug letrozole may pose a new therapeutic strategy to reduce poor long-term COVID-19 outcome.

5.
Signal Transduct Target Ther ; 6(1): 418, 2021 Dec 10.
Article in English | MEDLINE | ID: covidwho-1565706

ABSTRACT

The systemic processes involved in the manifestation of life-threatening COVID-19 and in disease recovery are still incompletely understood, despite investigations focusing on the dysregulation of immune responses after SARS-CoV-2 infection. To define hallmarks of severe COVID-19 in acute disease (n = 58) and in disease recovery in convalescent patients (n = 28) from Hannover Medical School, we used flow cytometry and proteomics data with unsupervised clustering analyses. In our observational study, we combined analyses of immune cells and cytokine/chemokine networks with endothelial activation and injury. ICU patients displayed an altered immune signature with prolonged lymphopenia but the expansion of granulocytes and plasmablasts along with activated and terminally differentiated T and NK cells and high levels of SARS-CoV-2-specific antibodies. The core signature of seven plasma proteins revealed a highly inflammatory microenvironment in addition to endothelial injury in severe COVID-19. Changes within this signature were associated with either disease progression or recovery. In summary, our data suggest that besides a strong inflammatory response, severe COVID-19 is driven by endothelial activation and barrier disruption, whereby recovery depends on the regeneration of the endothelial integrity.

6.
Front Med (Lausanne) ; 8: 749588, 2021.
Article in English | MEDLINE | ID: covidwho-1556183

ABSTRACT

Background: Testing of possibly infected individuals remains cornerstone of containing the spread of SARS-CoV-2. Detection dogs could contribute to mass screening. Previous research demonstrated canines' ability to detect SARS-CoV-2-infections but has not investigated if dogs can differentiate between COVID-19 and other virus infections. Methods: Twelve dogs were trained to detect SARS-CoV-2 positive samples. Three test scenarios were performed to evaluate their ability to discriminate SARS-CoV-2-infections from viral infections of a different aetiology. Naso- and oropharyngeal swab samples from individuals and samples from cell culture both infected with one of 15 viruses that may cause COVID-19-like symptoms were presented as distractors in a randomised, double-blind study. Dogs were either trained with SARS-CoV-2 positive saliva samples (test scenario I and II) or with supernatant from cell cultures (test scenario III). Results: When using swab samples from individuals infected with viruses other than SARS-CoV-2 as distractors (test scenario I), dogs detected swab samples from SARS-CoV-2-infected individuals with a mean diagnostic sensitivity of 73.8% (95% CI: 66.0-81.7%) and a specificity of 95.1% (95% CI: 92.6-97.7%). In test scenario II and III cell culture supernatant from cells infected with SARS-CoV-2, cells infected with other coronaviruses and non-infected cells were presented. Dogs achieved mean diagnostic sensitivities of 61.2% (95% CI: 50.7-71.6%, test scenario II) and 75.8% (95% CI: 53.0-98.5%, test scenario III), respectively. The diagnostic specificities were 90.9% (95% CI: 87.3-94.6%, test scenario II) and 90.2% (95% CI: 81.1-99.4%, test scenario III), respectively. Conclusion: In all three test scenarios the mean specificities were above 90% which indicates that dogs can distinguish SARS-CoV-2-infections from other viral infections. However, compared to earlier studies our scent dogs achieved lower diagnostic sensitivities. To deploy COVID-19 detection dogs as a reliable screening method it is therefore mandatory to include a variety of samples from different viral respiratory tract infections in dog training to ensure a successful discrimination process.

7.
Preprint in English | Other preprints | ID: ppcovidwho-295101

ABSTRACT

Rationale The role of non-invasive ventilation (NIV) in severe COVID-19 remains a matter of debate. Objectives To determine the utilization and outcome of NIV in COVID-19 in an unbiased cohort. Methods Observational study of confirmed COVID-19 cases of claims data of the Local Health Care Funds comparing patients with non-invasive and invasive mechanical ventilation (IMV) between spring versus autumn period 2020. Measurements and Main Results Nationwide cohort of 7490 cases (median/IQR age 70/60–79 years, 66% male) 3851 (51%) patients primarily received IMV without NIV, 1614 (22%) patients received NIV without subsequent intubation, and 1247 (17%) patients had NIV failure (NIV-F), defined by subsequent endotracheal intubation. The proportion of patients who received invasive MV decreased from 74% to 39% during the second period. Accordingly, the proportion of patients with NIV exclusively increased from 10% to 28%, and those failing NIV increased from 9% to 21%. Median length of hospital stay decreased from 26 to 22 days, and duration of MV decreased from 11.6 to 7.6 days. The NIV failure rate decreased from 49% to 42%. Overall mortality remained unchanged (51% versus 53%). Mortality was 39% with NIV-only, 52% with IMV and 66% with NIV-F with mortality rates steadily increasing from 58% in early NIV-F (day 1) to 75% in late NIV-F (>4 days). Conclusion Utilization of NIV rapidly increased during the autumn period, which was associated with a reduced duration of MV, but not with overall mortality. High NIV-F rates are associated with increased mortality, particularly in late NIV-F. Funding Institutional support and physical resources were provided by the University Witten/Herdecke and Kliniken der Stadt Köln and the Federal Association of the Local Health Care Funds. At a Glance Commentary Scientific Knowledge on the Subject Current management of ventilatory support in COVID-19 patients with respiratory failure is heterogeneous. Despite increasing use of non-invasive ventilation (NIV), defining intubation criteria still remains a matter of uncertainty and discussion, especially with regard to the balance between the NIV benefits and the risk of NIV failure. In addition, robust data concerning the influence of the duration and failure of NIV on intubation and mortality rates are still missing, although the time span between initiation of NIV and subsequent intubation in case of respiratory failure progression is suggested to influence patient outcome. What This Study Adds to the Field This is the first large observational study describing differences of ventilatory strategies between the spring and autumn period of the SARS-CoV-2 pandemic in Germany and provides the in-hospital mortality rate of 7,490 patients who received mechanical ventilation. The increased utilization of NIV from 10% (first period) to 29% (second period) was associated with overall reduced durations of mechanical ventilation and length of hospital stay, but overall mortality remained comparably high and reached 51%, 53% respectively. Patients succeeding with NIV had lower mortality rates than those getting intubated without preceding NIV attempts, but those failing NIV had higher mortality rates, respectively, and this became even more predominant in late NIV failure. The present observational study shows the increasing role of NIV in the concert of ICU medicine related to COVID-19, but also clearly addresses its risks in addition to its benefits, both impacting on mortality.

8.
Blood Adv ; 2021 Dec 03.
Article in English | MEDLINE | ID: covidwho-1551193

ABSTRACT

The high incidence of thrombotic events suggests a possible role of the contact system pathway in COVID-19 pathology. Here, we demonstrate altered levels of factor XII (FXII) and its activation products in critically ill COVID-19 patients in comparison to patients with severe acute respiratory distress syndrome due to influenza virus (ARDS-influenza). Compatible with this data, we report rapid consumption of FXII in COVID-19, but not in ARDS-influenza, plasma. Interestingly, the lag phase in fibrin formation, triggered by the FXII activator kaolin, was not prolonged in COVID-19 as opposed to ARDS-influenza. Using confocal and electron microscopy, we showed that increased FXII activation rate, in conjunction with elevated fibrinogen levels, triggers formation of fibrinolysis-resistant, compact clots with thin fibers and small pores in COVID-19. Accordingly, clot lysis was markedly impaired in COVID-19 as opposed to ARDS-infleunza subjects. Dysregulatated fibrinolytic system, as evidenced by elevated levels of thrombin-activatable fibrinolysis inhibitor, tissue-plasminogen activator, and plasminogen activator inhibitor-1 in COVID-19 potentiated this effect. Analysis of lung tissue sections revealed wide-spread extra- and intra-vascular compact fibrin deposits in COVID-19 patients. Together, compact fibrin network structure and dysregulated fibrinolysis may collectively contribute to high incidence of thrombotic events in COVID-19.

9.
Respiration ; : 1-5, 2021 Nov 26.
Article in English | MEDLINE | ID: covidwho-1538006

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic is an ongoing global crisis challenging the worldwide healthcare systems. Many patients present with a mismatch of profound hypoxemia and few signs of respiratory distress (i.e., silent hypoxemia). This particular clinical presentation is often cited, but data are limited. Main Body: We describe dyspnea sensation as assessed by using the BORG scale in pulmonary patients admitted to the emergency room during a 4-week period and transferred to the respiratory department of Siloah Hospital, Hannover, Germany. From October 1 to November 1, 2020, 82 patients with hypoxemia defined as oxygen demand to achieve an oxygen saturation (SpO2) ≥92% were included. In 45/82 (55%) patients, SARS-CoV-2 was detected by PCR on admission. Among non-COVID patients, exacerbation of COPD was the main diagnosis (15/37, 41%). All subjects rated their perceived dyspnea using the modified Borg CR10 scale. Patients in the non-COVID group suffered from more dyspnea on the modified Borg CR10 scale (median 1, IQR: 0-2 vs. median 5, IQR: 3-6, p < 0.001). In multivariate analysis, "silent hypoxemia" as defined by the dyspnea Borg CR10 scale ≥5 was independently associated with COVID-19 and presence of severe hypocapnia with an odds ratio of 0.221 (95% confidence interval 0.054, 0.907, p 0.036). CONCLUSION: Among pulmonary patients with acute hypoxemia defined as oxygen demand, patients suffering from COVID-19 experience less dyspnea compared to non-COVID patients. "Silent" hypoxemia was more common in COVID-19 patients.

11.
Lancet Infect Dis ; 2021 Nov 10.
Article in English | MEDLINE | ID: covidwho-1510480

ABSTRACT

During the current COVID-19 pandemic, health-care workers and uninfected patients in intensive care units (ICUs) are at risk of being infected with SARS-CoV-2 as a result of transmission from infected patients and health-care workers. In the absence of high-quality evidence on the transmission of SARS-CoV-2, clinical practice of infection control and prevention in ICUs varies widely. Using a Delphi process, international experts in intensive care, infectious diseases, and infection control developed consensus statements on infection control for SARS-CoV-2 in an ICU. Consensus was achieved for 31 (94%) of 33 statements, from which 25 clinical practice statements were issued. These statements include guidance on ICU design and engineering, health-care worker safety, visiting policy, personal protective equipment, patients and procedures, disinfection, and sterilisation. Consensus was not reached on optimal return to work criteria for health-care workers who were infected with SARS-CoV-2 or the acceptable disinfection strategy for heat-sensitive instruments used for airway management of patients with SARS-CoV-2 infection. Well designed studies are needed to assess the effects of these practice statements and address the remaining uncertainties.

12.
Int J Chron Obstruct Pulmon Dis ; 16: 2983-2996, 2021.
Article in English | MEDLINE | ID: covidwho-1511885

ABSTRACT

Alpha 1 Antitrypsin deficiency (AATD) is a hereditary condition characterized by low serum Alpha 1 Antitrypsin (AAT) levels and a predisposition towards early-onset emphysema. Infusion of AAT is the only disease-modifying therapy that can sufficiently raise plasma AAT levels above the putative protective threshold and reduce the decline in lung density loss. Several randomized controlled trials (RCTs) and registry studies support the clinical efficacy of AAT therapy in slowing the progression of AATD-related emphysema and improving survival outcomes. The COVID-19 pandemic has prompted physicians to develop additional strategies for delivering AAT therapy, which are not only more convenient for the patient, but are "COVID-19 friendly", thereby reducing the risk of exposing these vulnerable patients. Intravenous (IV) self-administration of AAT therapy is likely to be beneficial in certain subgroups of patients with AATD and can remove the need for weekly hospital visits, thereby improving independence and well-being. Increasing the awareness of self-administration in AATD through the development of formal guidelines and training programs is required among both physicians and patients and will play an essential role, especially post-COVID-19, in encouraging physicians to consider self-administration for AATD in suitable patients. This review summarizes the benefits of AAT therapy on the clinical endpoints of mortality and quality of life (QoL) and discusses the benefits of self-administration therapy compared with conventional therapy administered by a healthcare professional. In addition, this review highlights the challenges of providing AAT therapy during the COVID-19 pandemic and the potential considerations for its implementation thereafter.


Subject(s)
COVID-19 , Pulmonary Disease, Chronic Obstructive , alpha 1-Antitrypsin Deficiency , Humans , Pandemics , Registries , SARS-CoV-2 , alpha 1-Antitrypsin , alpha 1-Antitrypsin Deficiency/diagnosis , alpha 1-Antitrypsin Deficiency/drug therapy , alpha 1-Antitrypsin Deficiency/epidemiology
13.
BMC Infect Dis ; 21(1): 707, 2021 Jul 27.
Article in English | MEDLINE | ID: covidwho-1388739

ABSTRACT

BACKGROUND: The main strategy to contain the current SARS-CoV-2 pandemic remains to implement a comprehensive testing, tracing and quarantining strategy until vaccination of the population is adequate. Scent dogs could support current testing strategies. METHODS: Ten dogs were trained for 8 days to detect SARS-CoV-2 infections in beta-propiolactone inactivated saliva samples. The subsequent cognitive transfer performance for the recognition of non-inactivated samples were tested on three different body fluids (saliva, urine, and sweat) in a randomised, double-blind controlled study. RESULTS: Dogs were tested on a total of 5242 randomised sample presentations. Dogs detected non-inactivated saliva samples with a diagnostic sensitivity of 84% (95% CI: 62.5-94.44%) and specificity of 95% (95% CI: 93.4-96%). In a subsequent experiment to compare the scent recognition between the three non-inactivated body fluids, diagnostic sensitivity and specificity were 95% (95% CI: 66.67-100%) and 98% (95% CI: 94.87-100%) for urine, 91% (95% CI: 71.43-100%) and 94% (95% CI: 90.91-97.78%) for sweat, 82% (95% CI: 64.29-95.24%), and 96% (95% CI: 94.95-98.9%) for saliva respectively. CONCLUSIONS: The scent cognitive transfer performance between inactivated and non-inactivated samples as well as between different sample materials indicates that global, specific SARS-CoV-2-associated volatile compounds are released across different body secretions, independently from the patient's symptoms. All tested body fluids appear to be similarly suited for reliable detection of SARS-CoV-2 infected individuals.


Subject(s)
Body Fluids , COVID-19 , Animals , Dogs , Humans , Odorants , Pandemics , SARS-CoV-2 , Saliva
14.
Int J Mol Sci ; 22(15)2021 Jul 26.
Article in English | MEDLINE | ID: covidwho-1374420

ABSTRACT

For the treatment of severe COVID-19, supplementation with human plasma-purified α-1 antitrypsin (AAT) to patients is currently considered. AAT inhibits host proteases that facilitate viral entry and possesses broad anti-inflammatory and immunomodulatory activities. Researchers have demonstrated that an interaction between SARS-CoV-2 spike protein (S) and lipopolysaccharides (LPS) enhances pro-inflammatory responses in vitro and in vivo. Hence, we wanted to understand the potential anti-inflammatory activities of plasma-derived and recombinant AAT (recAAT) in a model of human total peripheral blood mononuclear cells (PBMCs) exposed to a combination of CHO expressed trimeric spike protein and LPS, ex vivo. We confirmed that cytokine production was enhanced in PBMCs within six hours when low levels of LPS were combined with purified spike proteins ("spike"). In the presence of 0.5 mg/mL recAAT, however, LPS/spike-induced TNF-α and IL-1ß mRNA expression and protein release were significantly inhibited (by about 46-50%) relative to LPS/spike alone. Although without statistical significance, recAAT also reduced production of IL-6 and IL-8. Notably, under the same experimental conditions, the plasma-derived AAT preparation Respreeza (used in native and oxidized forms) did not show significant effects. Our findings imply that an early pro-inflammatory activation of human PBMCs is better controlled by the recombinant version of AAT than the human plasma-derived AAT used here. Considering the increasing clinical interest in AAT therapy as useful to ameliorate the hyper-inflammation seen during COVID-19 infection, different AAT preparations require careful evaluation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Leukocytes, Mononuclear/metabolism , Spike Glycoprotein, Coronavirus/metabolism , alpha 1-Antitrypsin/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/immunology , CHO Cells , COVID-19/therapy , Cells, Cultured , Cricetulus , Cytokines/metabolism , Humans , Inflammation/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Lipopolysaccharides/immunology , Lipopolysaccharides/toxicity , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , alpha 1-Antitrypsin/chemistry , alpha 1-Antitrypsin/immunology
15.
ERJ Open Res ; 7(3)2021 Jul.
Article in English | MEDLINE | ID: covidwho-1371950

ABSTRACT

Background: Infection control measures for coronavirus disease 2019 (COVID-19) might have affected management and clinical state of patients with COPD. We analysed to which extent this common notion is fact-based. Methods: Patients of the COSYCONET cohort were contacted with three recurring surveys (COVID1, 2 and 3 at 0, 3 and 6 months, respectively). The questionnaires comprised behaviour, clinical and functional state, and medical treatment. The responses to the questionnaires were compared amongst themselves and with pre-COVID information from the last visit of COSYCONET. Results: Overall, 594 patients were contacted and 375 patients (58% males, forced expiratory volume in 1 s (FEV1) 61±22% predicted) provided valid data in COVID1 and COVID2. Five patients reported infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Most patients - except for patients with higher education - reported compliance with recommended protective measures, whereby compliance to hygiene, contact and access to physicians slightly improved between COVID1 and COVID2. Also, patients obtained more information from physicians than from public media. In the majority of cases, the personal physician could not be substituted by remote consultation. Over time, symptoms slightly increased and self-assessed physical capacity decreased. Results of COVID3 were similar. Women and patients with more exacerbations and dyspnoea avoided medical consultations, whereas Global Initiative for Chronic Obstructive Lung Disease (GOLD) D patients were more amenable to tele-consultation. Conclusion: In well-characterised COPD patients, we observed on average slight deteriorations of clinical state during the period of COVID-19 restrictions, with high and partially increasing adherence to protective measures. The data suggest that in particular, women and GOLD D patients should be actively contacted by physicians to identify deteriorations.

18.
Int J Mol Sci ; 22(15)2021 Jul 26.
Article in English | MEDLINE | ID: covidwho-1325683

ABSTRACT

For the treatment of severe COVID-19, supplementation with human plasma-purified α-1 antitrypsin (AAT) to patients is currently considered. AAT inhibits host proteases that facilitate viral entry and possesses broad anti-inflammatory and immunomodulatory activities. Researchers have demonstrated that an interaction between SARS-CoV-2 spike protein (S) and lipopolysaccharides (LPS) enhances pro-inflammatory responses in vitro and in vivo. Hence, we wanted to understand the potential anti-inflammatory activities of plasma-derived and recombinant AAT (recAAT) in a model of human total peripheral blood mononuclear cells (PBMCs) exposed to a combination of CHO expressed trimeric spike protein and LPS, ex vivo. We confirmed that cytokine production was enhanced in PBMCs within six hours when low levels of LPS were combined with purified spike proteins ("spike"). In the presence of 0.5 mg/mL recAAT, however, LPS/spike-induced TNF-α and IL-1ß mRNA expression and protein release were significantly inhibited (by about 46-50%) relative to LPS/spike alone. Although without statistical significance, recAAT also reduced production of IL-6 and IL-8. Notably, under the same experimental conditions, the plasma-derived AAT preparation Respreeza (used in native and oxidized forms) did not show significant effects. Our findings imply that an early pro-inflammatory activation of human PBMCs is better controlled by the recombinant version of AAT than the human plasma-derived AAT used here. Considering the increasing clinical interest in AAT therapy as useful to ameliorate the hyper-inflammation seen during COVID-19 infection, different AAT preparations require careful evaluation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Leukocytes, Mononuclear/metabolism , Spike Glycoprotein, Coronavirus/metabolism , alpha 1-Antitrypsin/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/immunology , CHO Cells , COVID-19/therapy , Cells, Cultured , Cricetulus , Cytokines/metabolism , Humans , Inflammation/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Lipopolysaccharides/immunology , Lipopolysaccharides/toxicity , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , alpha 1-Antitrypsin/chemistry , alpha 1-Antitrypsin/immunology
19.
Infection ; 2021 Jul 06.
Article in English | MEDLINE | ID: covidwho-1296979

ABSTRACT

PURPOSE: This executive summary of a national living guideline aims to provide rapid evidence based recommendations on the role of drug interventions in the treatment of hospitalized patients with COVID-19. METHODS: The guideline makes use of a systematic assessment and decision process using an evidence to decision framework (GRADE) as recommended standard WHO (2021). Recommendations are consented by an interdisciplinary panel. Evidence analysis and interpretation is supported by the CEOsys project providing extensive literature searches and living (meta-) analyses. For this executive summary, selected key recommendations on drug therapy are presented including the quality of the evidence and rationale for the level of recommendation. RESULTS: The guideline contains 11 key recommendations for COVID-19 drug therapy, eight of which are based on systematic review and/or meta-analysis, while three recommendations represent consensus expert opinion. Based on current evidence, the panel makes strong recommendations for corticosteroids (WHO scale 5-9) and prophylactic anticoagulation (all hospitalized patients with COVID-19) as standard of care. Intensified anticoagulation may be considered for patients with additional risk factors for venous thromboembolisms (VTE) and a low bleeding risk. The IL-6 antagonist tocilizumab may be added in case of high supplemental oxygen requirement and progressive disease (WHO scale 5-6). Treatment with nMABs may be considered for selected inpatients with an early SARS-CoV-2 infection that are not hospitalized for COVID-19. Convalescent plasma, azithromycin, ivermectin or vitamin D3 should not be used in COVID-19 routine care. CONCLUSION: For COVID-19 drug therapy, there are several options that are sufficiently supported by evidence. The living guidance will be updated as new evidence emerges.

20.
Pneumo News ; 13(3): 29-33, 2021.
Article in German | MEDLINE | ID: covidwho-1270558
SELECTION OF CITATIONS
SEARCH DETAIL
...