ABSTRACT
BACKGROUND AND PURPOSE: The COVID-19 pandemic and related social isolation measures are likely to have adverse consequences on community healthcare provision and outcome after acute illnesses treated in hospital, including stroke. We aimed to evaluate the impact of the COVID-19 pandemic on patient-reported health outcomes after hospital admission for acute stroke. METHODS: This retrospective study included adults with acute stroke admitted to the University College Hospital NHS Foundation Trust Hyperacute Stroke Unit. We included two separate cohorts of consecutively enrolled patients from the same geographical population at two time points: 16th March-16th May 2018 (pre-COVID-19 pandemic); and 16th March-16th May 2020 (during the COVID-19 pandemic). Patients in both cohorts completed the validated Patient Reported Outcomes Measurement Information System-29 (PROMIS-29 version 2.0) at 30 days after stroke. RESULTS: We included 205 patients who were alive at 30 days (106 admitted before and 99 admitted during the COVID-19 pandemic), of whom 201/205 (98%) provided patient-reported health outcomes. After adjustment for confounding factors, admission with acute stroke during the COVID-19 pandemic was independently associated with increased anxiety (ß = 28.0, p < 0.001), fatigue (ß = 9.3, p < 0.001), depression (ß = 4.5, p = 0.002), sleep disturbance (ß = 2.3, p = 0.018), pain interference (ß = 10.8, p < 0.001); and reduced physical function (ß = 5.2, p < 0.001) and participation in social roles and activities (ß = 6.9, p < 0.001). CONCLUSION: Compared with the pre-pandemic cohort, patients admitted with acute stroke during the first wave of the COVID-19 pandemic reported poorer health outcomes at 30 day follow-up in all domains. Stroke service planning for any future pandemic should include measures to mitigate this major adverse impact on patient health.
Subject(s)
COVID-19 , Stroke , Adult , Humans , Outcome Assessment, Health Care , Pandemics , Patient Reported Outcome Measures , Retrospective Studies , SARS-CoV-2 , Stroke/epidemiology , Stroke/therapy , United Kingdom/epidemiologySubject(s)
COVID-19 Vaccines/adverse effects , Ischemic Stroke/etiology , Purpura, Thrombotic Thrombocytopenic/complications , Purpura, Thrombotic Thrombocytopenic/etiology , Adult , ChAdOx1 nCoV-19 , Female , Humans , Ischemic Stroke/drug therapy , Male , Purpura, Thrombotic Thrombocytopenic/drug therapy , Tomography, X-Ray ComputedABSTRACT
BACKGROUND: A new syndrome of vaccine-induced immune thrombotic thrombocytopenia (VITT) has emerged as a rare side-effect of vaccination against COVID-19. Cerebral venous thrombosis is the most common manifestation of this syndrome but, to our knowledge, has not previously been described in detail. We aimed to document the features of post-vaccination cerebral venous thrombosis with and without VITT and to assess whether VITT is associated with poorer outcomes. METHODS: For this multicentre cohort study, clinicians were asked to submit all cases in which COVID-19 vaccination preceded the onset of cerebral venous thrombosis, regardless of the type of vaccine, interval between vaccine and onset of cerebral venous thrombosis symptoms, or blood test results. We collected clinical characteristics, laboratory results (including the results of tests for anti-platelet factor 4 antibodies where available), and radiological features at hospital admission of patients with cerebral venous thrombosis after vaccination against COVID-19, with no exclusion criteria. We defined cerebral venous thrombosis cases as VITT-associated if the lowest platelet count recorded during admission was below 150â×â109 per L and, if the D-dimer was measured, the highest value recorded was greater than 2000 µg/L. We compared the VITT and non-VITT groups for the proportion of patients who had died or were dependent on others to help them with their activities of daily living (modified Rankin score 3-6) at the end of hospital admission (the primary outcome of the study). The VITT group were also compared with a large cohort of patients with cerebral venous thrombosis described in the International Study on Cerebral Vein and Dural Sinus Thrombosis. FINDINGS: Between April 1 and May 20, 2021, we received data on 99 patients from collaborators in 43 hospitals across the UK. Four patients were excluded because they did not have definitive evidence of cerebral venous thrombosis on imaging. Of the remaining 95 patients, 70 had VITT and 25 did not. The median age of the VITT group (47 years, IQR 32-55) was lower than in the non-VITT group (57 years; 41-62; p=0·0045). Patients with VITT-associated cerebral venous thrombosis had more intracranial veins thrombosed (median three, IQR 2-4) than non-VITT patients (two, 2-3; p=0·041) and more frequently had extracranial thrombosis (31 [44%] of 70 patients) compared with non-VITT patients (one [4%] of 25 patients; p=0·0003). The primary outcome of death or dependency occurred more frequently in patients with VITT-associated cerebral venous thrombosis (33 [47%] of 70 patients) compared with the non-VITT control group (four [16%] of 25 patients; p=0·0061). This adverse outcome was less frequent in patients with VITT who received non-heparin anticoagulants (18 [36%] of 50 patients) compared with those who did not (15 [75%] of 20 patients; p=0·0031), and in those who received intravenous immunoglobulin (22 [40%] of 55 patients) compared with those who did not (11 [73%] of 15 patients; p=0·022). INTERPRETATION: Cerebral venous thrombosis is more severe in the context of VITT. Non-heparin anticoagulants and immunoglobulin treatment might improve outcomes of VITT-associated cerebral venous thrombosis. Since existing criteria excluded some patients with otherwise typical VITT-associated cerebral venous thrombosis, we propose new diagnostic criteria that are more appropriate. FUNDING: None.
Subject(s)
COVID-19 Vaccines/adverse effects , Intracranial Thrombosis/epidemiology , Purpura, Thrombocytopenic, Idiopathic/epidemiology , Vaccination/adverse effects , Adult , COVID-19 Vaccines/immunology , Cohort Studies , Female , Fibrin Fibrinogen Degradation Products , Humans , Intracranial Thrombosis/drug therapy , Intracranial Thrombosis/mortality , Male , Middle Aged , Platelet Count , Purpura, Thrombocytopenic, Idiopathic/drug therapy , SARS-CoV-2 , United Kingdom/epidemiology , Venous Thrombosis/drug therapy , Venous Thrombosis/epidemiologyABSTRACT
Preliminary pathological and biomarker data suggest that SARS-CoV-2 infection can damage the nervous system. To understand what, where and how damage occurs, we collected serum and CSF from patients with COVID-19 and characterized neurological syndromes involving the PNS and CNS (n = 34). We measured biomarkers of neuronal damage and neuroinflammation, and compared these with non-neurological control groups, which included patients with (n = 94) and without (n = 24) COVID-19. We detected increased concentrations of neurofilament light, a dynamic biomarker of neuronal damage, in the CSF of those with CNS inflammation (encephalitis and acute disseminated encephalomyelitis) [14â800 pg/ml (400, 32â400)], compared to those with encephalopathy [1410 pg/ml (756, 1446)], peripheral syndromes (Guillain-Barré syndrome) [740 pg/ml (507, 881)] and controls [872 pg/ml (654, 1200)]. Serum neurofilament light levels were elevated across patients hospitalized with COVID-19, irrespective of neurological manifestations. There was not the usual close correlation between CSF and serum neurofilament light, suggesting serum neurofilament light elevation in the non-neurological patients may reflect peripheral nerve damage in response to severe illness. We did not find significantly elevated levels of serum neurofilament light in community cases of COVID-19 arguing against significant neurological damage. Glial fibrillary acidic protein, a marker of astrocytic activation, was not elevated in the CSF or serum of any group, suggesting astrocytic activation is not a major mediator of neuronal damage in COVID-19.
ABSTRACT
BACKGROUND: A high prevalence of antiphospholipid antibodies has been reported in case series of patients with neurological manifestations and COVID-19; however, the pathogenicity of antiphospholipid antibodies in COVID-19 neurology remains unclear. METHODS: This single-centre cross-sectional study included 106 adult patients: 30 hospitalised COVID-neurological cases, 47 non-neurological COVID-hospitalised controls, and 29 COVID-non-hospitalised controls, recruited between March and July 2020. We evaluated nine antiphospholipid antibodies: anticardiolipin antibodies [aCL] IgA, IgM, IgG; anti-beta-2 glycoprotein-1 [aß2GPI] IgA, IgM, IgG; anti-phosphatidylserine/prothrombin [aPS/PT] IgM, IgG; and anti-domain I ß2GPI (aD1ß2GPI) IgG. FINDINGS: There was a high prevalence of antiphospholipid antibodies in the COVID-neurological (73.3%) and non-neurological COVID-hospitalised controls (76.6%) in contrast to the COVID-non-hospitalised controls (48.2%). aPS/PT IgG titres were significantly higher in the COVID-neurological group compared to both control groups (p < 0.001). Moderate-high titre of aPS/PT IgG was found in 2 out of 3 (67%) patients with acute disseminated encephalomyelitis [ADEM]. aPS/PT IgG titres negatively correlated with oxygen requirement (FiO2 R=-0.15 p = 0.040) and was associated with venous thromboembolism (p = 0.043). In contrast, aCL IgA (p < 0.001) and IgG (p < 0.001) was associated with non-neurological COVID-hospitalised controls compared to the other groups and correlated positively with d-dimer and creatinine but negatively with FiO2. INTERPRETATION: Our findings show that aPS/PT IgG is associated with COVID-19-associated ADEM. In contrast, aCL IgA and IgG are seen much more frequently in non-neurological hospitalised patients with COVID-19. Characterisation of antiphospholipid antibody persistence and potential longitudinal clinical impact are required to guide appropriate management. FUNDING: This work is supported by UCL Queen Square Biomedical Research Centre (BRC) and Moorfields BRC grants (#560441 and #557595). LB is supported by a Wellcome Trust Fellowship (222102/Z/20/Z). RWP is supported by an Alzheimer's Association Clinician Scientist Fellowship (AACSF-20-685780) and the UK Dementia Research Institute. KB is supported by the Swedish Research Council (#2017-00915) and the Swedish state under the agreement between the Swedish government and the County Councils, the ALF-agreement (#ALFGBG-715986). HZ is a Wallenberg Scholar supported by grants from the Swedish Research Council (#2018-02532), the European Research Council (#681712), Swedish State Support for Clinical Research (#ALFGBG-720931), the Alzheimer Drug Discovery Foundation (ADDF), USA (#201809-2016862), and theUK Dementia Research Institute at UCL. BDM is supported by grants from the MRC/UKRI (MR/V007181/1), MRC (MR/T028750/1) and Wellcome (ISSF201902/3). MSZ, MH and RS are supported by the UCL/UCLH NIHR Biomedical Research Centre and MSZ is supported by Queen Square National Brain Appeal.
ABSTRACT
Recent case-series of small size implied a pathophysiological association between coronavirus disease 2019 (COVID-19) and severe large-vessel acute ischemic stroke. Given that severe strokes are typically associated with poor prognosis and can be very efficiently treated with recanalization techniques, confirmation of this putative association is urgently warranted in a large representative patient cohort to alert stroke clinicians, and inform pre- and in-hospital acute stroke patient pathways. We pooled all consecutive patients hospitalized with laboratory-confirmed COVID-19 and acute ischemic stroke in 28 sites from 16 countries. To assess whether stroke severity and outcomes (assessed at discharge or at the latest assessment for those patients still hospitalized) in patients with acute ischemic stroke are different between patients with COVID-19 and non-COVID-19, we performed 1:1 propensity score matching analyses of our COVID-19 patients with non-COVID-19 patients registered in the Acute Stroke Registry and Analysis of Lausanne Registry between 2003 and 2019. Between January 27, 2020, and May 19, 2020, 174 patients (median age 71.2 years; 37.9% females) with COVID-19 and acute ischemic stroke were hospitalized (median of 12 patients per site). The median National Institutes of Health Stroke Scale was 10 (interquartile range [IQR], 4-18). In the 1:1 matched sample of 336 patients with COVID-19 and non-COVID-19, the median National Institutes of Health Stroke Scale was higher in patients with COVID-19 (10 [IQR, 4-18] versus 6 [IQR, 3-14]), P=0.03; (odds ratio, 1.69 [95% CI, 1.08-2.65] for higher National Institutes of Health Stroke Scale score). There were 48 (27.6%) deaths, of which 22 were attributed to COVID-19 and 26 to stroke. Among 96 survivors with available information about disability status, 49 (51%) had severe disability at discharge. In the propensity score-matched population (n=330), patients with COVID-19 had higher risk for severe disability (median mRS 4 [IQR, 2-6] versus 2 [IQR, 1-4], P<0.001) and death (odds ratio, 4.3 [95% CI, 2.22-8.30]) compared with patients without COVID-19. Our findings suggest that COVID-19 associated ischemic strokes are more severe with worse functional outcome and higher mortality than non-COVID-19 ischemic strokes.
Subject(s)
Brain Ischemia/complications , Coronavirus Infections/complications , Pneumonia, Viral/complications , Stroke/complications , Aged , Aged, 80 and over , Brain Ischemia/diagnostic imaging , Brain Ischemia/therapy , COVID-19 , Cohort Studies , Coronavirus Infections/diagnostic imaging , Coronavirus Infections/therapy , Disability Evaluation , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/therapy , Propensity Score , Recovery of Function , Registries , Stroke/diagnostic imaging , Stroke/therapy , Survival Analysis , Time-to-Treatment , Tomography, X-Ray Computed , Treatment OutcomeABSTRACT
OBJECTIVE: We set out to determine which characteristics and outcomes of stroke are associated with COVID-19. METHODS: This case-control study included patients admitted with stroke to 13 hospitals in England and Scotland between 9 March and 5 July 2020. We collected data on 86 strokes (81 ischaemic strokes and 5 intracerebral haemorrhages) in patients with evidence of COVID-19 at the time of stroke onset (cases). They were compared with 1384 strokes (1193 ischaemic strokes and 191 intracerebral haemorrhages) in patients admitted during the same time period who never had evidence of COVID-19 (controls). In addition, the whole group of stroke admissions, including another 37 patients who appeared to have developed COVID-19 after their stroke, were included in two logistic regression analyses examining which features were independently associated with COVID-19 status and with inpatient mortality. RESULTS: Cases with ischaemic stroke were more likely than ischaemic controls to occur in Asians (18.8% vs 6.7%, p<0.0002), were more likely to involve multiple large vessel occlusions (17.9% vs 8.1%, p<0.03), were more severe (median National Institutes of Health Stroke Scale score 8 vs 5, p<0.002), were associated with higher D-dimer levels (p<0.01) and were associated with more severe disability on discharge (median modified Rankin Scale score 4 vs 3, p<0.0001) and inpatient death (19.8% vs 6.9%, p<0.0001). Recurrence of stroke during the patient's admission was rare in cases and controls (2.3% vs 1.0%, NS). CONCLUSIONS: Our data suggest that COVID-19 may be an important modifier of the onset, characteristics and outcome of acute ischaemic stroke.
Subject(s)
COVID-19/complications , Hemorrhagic Stroke/etiology , Ischemic Stroke/etiology , Aged , Aged, 80 and over , Case-Control Studies , Female , Hospitalization , Humans , Male , Middle Aged , Risk Factors , United KingdomABSTRACT
BACKGROUND: Patients with cardiovascular comorbidities are at high risk of poor outcome from COVID-19. However, how the burden (number) of vascular risk factors influences the risk of severe COVID-19 disease remains unresolved. Our aim was to investigate the association of severe COVID-19 illness with vascular risk factor burden. METHODS: We included 164 (61.8 ± 13.6 years) patients with COVID-19 in this retrospective study. We compared the difference in clinical characteristics, laboratory findings and chest computed tomography (CT) findings between patients with severe and non-severe COVID-19 illness. We evaluated the association between the number of vascular risk factors and the development of severe COVID-19 disease, using a Cox regression model. RESULTS: Sixteen (9.8%) patients had no vascular risk factors; 38 (23.2%) had 1; 58 (35.4%) had 2; 34 (20.7%) had 3; and 18 (10.9%) had ≥4 risk factors. Twenty-nine patients (17.7%) experienced severe COVID-19 disease with a median (14 [7-27] days) duration between onset to developing severe COVID-19 disease, an event rate of 4.47 per 1000-patient days (95%CI 3.10-6.43). Kaplan-Meier curves showed a gradual increase in the risk of severe COVID-19 illness (log-rank P < 0.001) stratified by the number of vascular risk factors. After adjustment for age, sex, and comorbidities as potential confounders, vascular risk factor burden remained associated with an increasing risk of severe COVID-19 illness. CONCLUSIONS: Patients with increasing vascular risk factor burden have an increasing risk of severe COVID-19 disease, and this population might benefit from specific COVID-19 prevention (e.g., self-isolation) and early hospital treatment measures.