Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-317008

ABSTRACT

Vector-based SARS-CoV-2 vaccines have been associated with vaccine-induced thrombosis with thrombocytopenia syndrome (VITT/TTS), but the causative factors are still unresolved. We comprehensively analyzed ChAdOx1 nCov-19 (AstraZeneca) and Ad26.COV2.S (Johnson & Johnson). ChAdOx1 nCoV-19 contains significant amounts of host cell protein impurities, including functionally active proteasomes, and adenoviral proteins. In Ad26.COV2.S much less impurities were found. Platelet-factor 4 (PF4) formed complexes with ChAdOx1 nCoV-19 constituents, but not with purified virions from ChAdOx1 nCoV-19 or with Ad26.COV2.S. Vascular hyperpermeability was induced by ChAdOx nCoV-19 but not by Ad26.COV2.S.These differences in impurities together with EDTA-induced capillary leakage might contribute to the higher incidence rate of VITT associated with ChAdOx1 nCoV-19 compared to Ad26.COV2.S.

2.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-311513

ABSTRACT

Background: SARS-CoV-2 vaccine ChAdOx1 nCov-19 rarely causes vaccine-induced immune thrombotic thrombocytopenia (VITT) that—like autoimmune heparin-induced thrombocytopenia—is mediated by platelet-activating anti-platelet factor 4 (PF4) antibodies. Methods: We investigated vaccine, PF4, and VITT patient-derived anti-PF4 antibody interactions using dynamic light scattering, 3D-super-resolution microscopy, and electron microscopy. Mass spectrometry was used to analyze vaccine composition. We investigated the mechanism for early post-vaccine inflammatory reactions as potential co-stimulant for anti-PF4 immune response. Finally, we evaluated VITT antibodies for inducing release of procoagulant DNA-containing neutrophil extracellular traps (NETs), and measured DNase activity in VITT patient serum. Results: Biophysical analyses showed formation of complexes between PF4 and vaccine constituents, including virus proteins that were recognized by VITT antibodies. EDTA, a vaccine constituent, increased microvascular leakage in mice allowing for circulation of virus- and virus-producing cell culture-derived proteins. Antibodies in normal sera cross-reacted with human proteins in the vaccine and likely contribute to commonly observed acute ChAdOx1 nCov-19 post-vaccination inflammatory reactions. Polyphosphates and DNA enhanced PF4-dependent platelet activation by VITT antibodies. In the presence of platelets, PF4 enhanced VITT antibody-driven procoagulant NETs formation, while DNase activity was reduced in VITT sera, with granulocyte-rich cerebral vein thrombosis observed in a VITT patient. Conclusions: ChAdOx1 nCoV-19 vaccine constituents (i) form antigenic complexes with PF4, (ii) EDTA increases microvascular permeability, and (iii) vaccine components cause acute inflammatory reactions. Antigen formation in a proinflammatory milieu offers an explanation for anti-PF4 antibody production. High-titer anti-PF4 antibodies activate platelets and induce neutrophil activation and NETs formation, fueling the VITT prothrombotic response.

3.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-311512

ABSTRACT

Background: Some recipients of ChAdOx1 nCoV-19 COVID-19 Vaccine AstraZeneca develop antibody-mediated vaccine-induced thrombotic thrombocytopenia (VITT), associated with cerebral venous and other unusual thrombosis resembling autoimmune heparin-induced thrombocytopenia. A prothrombotic predisposition is also observed in Covid-19. We explored whether antibodies against the SARS-CoV-2 spike protein induced by Covid-19 cross-react with platelet factor 4 (PF4/CXLC4), the protein targeted in both VITT and autoimmune heparin-induced thrombocytopenia. Methods: Immunogenic epitopes of PF4 and SARS-CoV-2 spike protein were compared via prediction tools and 3D modelling software (IMED, SIM, MacMYPOL). Sera from 222 PCR-confirmed Covid-19 patients from five European centers were tested by PF4/heparin ELISA, heparin-dependent and PF4-dependent platelet activation assays. Immunogenic reactivity of purified anti-PF4 and anti-PF4/heparin antibodies from patients with VITT were tested against recombinant SARS-CoV-2 spike protein. Results: Three motifs within the spike protein sequence share a potential immunogenic epitope with PF4. Nineteen of 222 (8.6%) Covid-19 patient sera tested positive in the IgG-specific PF4/heparin ELISA, none of which showed platelet activation in the heparin-dependent activation assay, including 10 (4.5%) of the 222 Covid-19 patients who developed thromboembolic complications. Purified anti-PF4 and anti-PF4/heparin antibodies from two VITT patients did not show cross-reactivity to recombinant SARS-CoV-2 spike protein. Conclusions: The antibody responses to PF4 in SARS-CoV-2 infection and after vaccination with COVID-19 Vaccine AstraZeneca differ. Antibodies against SARS-CoV-2 spike protein do not cross-react with PF4 or PF4/heparin complexes through molecular mimicry. These findings make it very unlikely that the intended vaccine-induced immune response against SARS-CoV-2 spike protein would itself induce VITT.

4.
Haematologica ; 107(4): 947-957, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1635447

ABSTRACT

Vector-based SARS-CoV-2 vaccines have been associated with vaccine- induced thrombosis with thrombocytopenia syndrome (VITT/TTS), but the causative factors are still unresolved. We comprehensively analyzed the ChAdOx1 nCoV-19 (AstraZeneca) and Ad26.COV2.S (Johnson and Johnson) vaccines. ChAdOx1 nCoV-19 contains significant amounts of host cell protein impurities, including functionally active proteasomes, and adenoviral proteins. A much smaller amount of impurities was found in Ad26.COV2.S. Platelet factor 4 formed complexes with ChAdOx1 nCoV-19 constituents, but not with purified virions from ChAdOx1 nCoV-19 or with Ad26.COV2.S. Vascular hyperpermeability was induced by ChAdOx nCoV-19 but not by Ad26.COV2.S. These differences in impurities together with EDTAinduced capillary leakage might contribute to the higher incidence rate of VITT associated with ChAdOx1 nCoV-19 compared to Ad26.COV2.S.


Subject(s)
COVID-19 , Vaccines , COVID-19 Vaccines/adverse effects , Humans , SARS-CoV-2
5.
Blood ; 138(22): 2256-2268, 2021 12 02.
Article in English | MEDLINE | ID: covidwho-1443788

ABSTRACT

SARS-CoV-2 vaccine ChAdOx1 nCoV-19 (AstraZeneca) causes a thromboembolic complication termed vaccine-induced immune thrombotic thrombocytopenia (VITT). Using biophysical techniques, mouse models, and analysis of VITT patient samples, we identified determinants of this vaccine-induced adverse reaction. Super-resolution microscopy visualized vaccine components forming antigenic complexes with platelet factor 4 (PF4) on platelet surfaces to which anti-PF4 antibodies obtained from VITT patients bound. PF4/vaccine complex formation was charge-driven and increased by addition of DNA. Proteomics identified substantial amounts of virus production-derived T-REx HEK293 proteins in the ethylenediaminetetraacetic acid (EDTA)-containing vaccine. Injected vaccine increased vascular leakage in mice, leading to systemic dissemination of vaccine components known to stimulate immune responses. Together, PF4/vaccine complex formation and the vaccine-stimulated proinflammatory milieu trigger a pronounced B-cell response that results in the formation of high-avidity anti-PF4 antibodies in VITT patients. The resulting high-titer anti-PF4 antibodies potently activated platelets in the presence of PF4 or DNA and polyphosphate polyanions. Anti-PF4 VITT patient antibodies also stimulated neutrophils to release neutrophil extracellular traps (NETs) in a platelet PF4-dependent manner. Biomarkers of procoagulant NETs were elevated in VITT patient serum, and NETs were visualized in abundance by immunohistochemistry in cerebral vein thrombi obtained from VITT patients. Together, vaccine-induced PF4/adenovirus aggregates and proinflammatory reactions stimulate pathologic anti-PF4 antibody production that drives thrombosis in VITT. The data support a 2-step mechanism underlying VITT that resembles the pathogenesis of (autoimmune) heparin-induced thrombocytopenia.


Subject(s)
Antigen-Antibody Complex/immunology , Autoantibodies/immunology , COVID-19/prevention & control , Capsid Proteins/adverse effects , Drug Contamination , Genetic Vectors/adverse effects , HEK293 Cells/immunology , Immunoglobulin G/immunology , Platelet Factor 4/immunology , Purpura, Thrombocytopenic, Idiopathic/etiology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/adverse effects , Adenoviridae/immunology , Animals , Antigen-Antibody Complex/ultrastructure , Autoantibodies/biosynthesis , Capillary Leak Syndrome/etiology , Capsid Proteins/immunology , Cell Line, Transformed , /immunology , Dynamic Light Scattering , Epitopes/chemistry , Epitopes/immunology , Extracellular Traps/immunology , Extravasation of Diagnostic and Therapeutic Materials/etiology , Genetic Vectors/immunology , HEK293 Cells/chemistry , Humans , Imaging, Three-Dimensional , Immunoglobulin G/biosynthesis , Inflammation , Mice , Microscopy/methods , Platelet Activation , Proteomics , Purpura, Thrombocytopenic, Idiopathic/blood , Purpura, Thrombocytopenic, Idiopathic/immunology , Sinus Thrombosis, Intracranial/diagnostic imaging , Sinus Thrombosis, Intracranial/immunology , Spike Glycoprotein, Coronavirus/immunology , Virus Cultivation
6.
Blood ; 138(14): 1269-1277, 2021 10 07.
Article in English | MEDLINE | ID: covidwho-1317119

ABSTRACT

Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a severe adverse effect of ChAdOx1 nCoV-19 COVID-19 vaccine (Vaxzevria) and Janssen Ad26.COV2.S COVID-19 vaccine, and it is associated with unusual thrombosis. VITT is caused by anti-platelet factor 4 (PF4) antibodies activating platelets through their FcγRIIa receptors. Antibodies that activate platelets through FcγRIIa receptors have also been identified in patients with COVID-19. These findings raise concern that vaccination-induced antibodies against anti-SARS-CoV-2 spike protein cause thrombosis by cross-reacting with PF4. Immunogenic epitopes of PF4 and SARS-CoV-2 spike protein were compared using in silico prediction tools and 3D modeling. The SARS-CoV-2 spike protein and PF4 share at least 1 similar epitope. Reactivity of purified anti-PF4 antibodies from patients with VITT was tested against recombinant SARS-CoV-2 spike protein. However, none of the affinity-purified anti-PF4 antibodies from 14 patients with VITT cross-reacted with SARS-CoV-2 spike protein. Sera from 222 polymerase chain reaction-confirmed patients with COVID-19 from 5 European centers were tested by PF4-heparin enzyme-linked immunosorbent assays and PF4-dependent platelet activation assays. We found anti-PF4 antibodies in sera from 19 (8.6%) of 222 patients with COVID-19. However, only 4 showed weak to moderate platelet activation in the presence of PF4, and none of those patients developed thrombotic complications. Among 10 (4.5%) of 222 patients who had COVID-19 with thrombosis, none showed PF4-dependent platelet-activating antibodies. In conclusion, antibodies against PF4 induced by vaccination do not cross-react with the SARS-CoV-2 spike protein, indicating that the intended vaccine-induced immune response against SARS-CoV-2 spike protein is not the trigger of VITT. PF4-reactive antibodies found in patients with COVID-19 in this study were not associated with thrombotic complications.


Subject(s)
Antibodies/adverse effects , COVID-19 Vaccines/adverse effects , Cross Reactions/immunology , Platelet Factor 4/immunology , Purpura, Thrombocytopenic, Idiopathic/etiology , Purpura, Thrombocytopenic, Idiopathic/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Aged, 80 and over , Blood Platelets/immunology , COVID-19/immunology , Cohort Studies , Epitopes/immunology , Female , Heparin/metabolism , Humans , Immunoglobulin G/immunology , Male , Middle Aged , Protein Binding , Protein Domains , Purpura, Thrombocytopenic, Idiopathic/blood , Spike Glycoprotein, Coronavirus/chemistry , Young Adult
7.
Blood ; 137(26): 3656-3659, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1215090

ABSTRACT

Vaccination is crucial in combatting the severe acute respiratory syndrome coronavirus 2 pandemic. The rare complication of thrombocytopenia and thrombotic complications at unusual sites after ChAdOx1 nCov-19 vaccination is caused by platelet-activating antibodies directed against platelet factor 4 (PF4). We present a widely applicable whole-blood standard flow cytometric assay to identify the pathogenic antibodies associated with vaccine-induced immune-mediated thrombotic thrombocytopenia (VITT) after ChAdOx1 nCov-19 vaccination. This assay will enable rapid diagnosis by many laboratories. This trial was registered at www.clinicaltrials.gov as #NCT04370119.


Subject(s)
Autoantibodies/blood , COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Flow Cytometry/methods , Immunoglobulin G/blood , Platelet Activation/immunology , Platelet Factor 4/immunology , Purpura, Thrombocytopenic, Idiopathic/diagnosis , Receptors, IgG/immunology , SARS-CoV-2 , Vaccination/adverse effects , Antibody Specificity , Autoantibodies/biosynthesis , Autoantibodies/immunology , COVID-19 Vaccines/immunology , Heparin/adverse effects , Heparin/immunology , Humans , Immunoenzyme Techniques , Immunogenicity, Vaccine , Immunoglobulin G/biosynthesis , Immunoglobulin G/immunology , P-Selectin/analysis , Purpura, Thrombocytopenic, Idiopathic/etiology , Purpura, Thrombocytopenic, Idiopathic/immunology
8.
Transfus Med Hemother ; 48(3): 148-153, 2021 May.
Article in English | MEDLINE | ID: covidwho-1146485

ABSTRACT

INTRODUCTION: In the light of the ongoing SARS-CoV-2 pandemic, convalescent plasma is a treatment option for CO-VID-19. In contrast to usual therapeutic plasma, the therapeutic agents of convalescent plasma do not represent clotting factor activities, but immunoglobulins. Quarantine storage of convalescent plasma as a measure to reduce the risk of pathogen transmission is not feasible. Therefore, pathogen inactivation (e.g., Theraflex®-MB, Macopharma, Mouvaux, France) is an attractive option. Data on the impact of pathogen inactivation by methylene blue (MB) treatment on antibody integrity are sparse. METHODS: Antigen-specific binding capacity was tested before and after MB treatment of plasma (n = 10). IgG and IgM isoagglutinin titers were tested by agglutination in increasing dilutions. Furthermore, the binding of anti-EBV and anti-tetanus toxin IgG to their specific antigens was assessed by ELISA, and IgG binding to Fc receptors was assessed by flow cytometry using THP-1 cells expressing FcRI and FcRII. RESULTS: There was no significant difference in the isoagglutinin titers, the antigen binding capacity of anti-EBV and anti-tetanus toxin IgG, as well as the Fc receptor binding capacity before and after MB treatment of plasma. CONCLUSION: MB treatment of plasma does not inhibit the binding capacity of IgM and IgG to their epitopes, or the Fc receptor interaction of IgG. Based on these results, MB treatment of convalescent plasma is appropriate to reduce the risk of pathogen transmission if quarantine storage is omitted.

9.
Blood Adv ; 4(24): 6315-6326, 2020 12 22.
Article in English | MEDLINE | ID: covidwho-985753

ABSTRACT

Community-acquired pneumonia by primary or superinfections with Streptococcus pneumoniae can lead to acute respiratory distress requiring mechanical ventilation. The pore-forming toxin pneumolysin alters the alveolar-capillary barrier and causes extravasation of protein-rich fluid into the interstitial pulmonary tissue, which impairs gas exchange. Platelets usually prevent endothelial leakage in inflamed pulmonary tissue by sealing inflammation-induced endothelial gaps. We not only confirm that S pneumoniae induces CD62P expression in platelets, but we also show that, in the presence of pneumolysin, CD62P expression is not associated with platelet activation. Pneumolysin induces pores in the platelet membrane, which allow anti-CD62P antibodies to stain the intracellular CD62P without platelet activation. Pneumolysin treatment also results in calcium efflux, increase in light transmission by platelet lysis (not aggregation), loss of platelet thrombus formation in the flow chamber, and loss of pore-sealing capacity of platelets in the Boyden chamber. Specific anti-pneumolysin monoclonal and polyclonal antibodies inhibit these effects of pneumolysin on platelets as do polyvalent human immunoglobulins. In a post hoc analysis of the prospective randomized phase 2 CIGMA trial, we show that administration of a polyvalent immunoglobulin preparation was associated with a nominally higher platelet count and nominally improved survival in patients with severe S pneumoniae-related community-acquired pneumonia. Although, due to the low number of patients, no definitive conclusion can be made, our findings provide a rationale for investigation of pharmacologic immunoglobulin preparations to target pneumolysin by polyvalent immunoglobulin preparations in severe community-acquired pneumococcal pneumonia, to counteract the risk of these patients becoming ventilation dependent. This trial was registered at www.clinicaltrials.gov as #NCT01420744.


Subject(s)
Platelet Activation , Streptolysins , Bacterial Proteins , Humans , Immunoglobulins , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL