Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-335558

ABSTRACT

Ancestral SARS-CoV-2 lacks the intrinsic ability to bind to the mouse ACE2 receptor and therefore establishment of SARS-CoV-2 mouse models has been limited to the use of mouse-adapted viruses or genetically modified mice. Interestingly, some of the variants of concern, such as the beta B.1.351 variant, show an improved binding to the mouse receptor and hence better replication in different Wild type (WT) mice species. Here, we desribe the establishment of SARS-CoV-2 beta B.1.351 variant infection model in male SCID mice as a tool to assess the antiviral efficacy of potential SARS-CoV-2 small molecule inhibitors. Intranasal infection of male SCID mice with 10 5 TCID50 of the beta B.1.351 variant resulted in high viral loads in the lungs and moderate signs of lung pathology on day 3 post-infection (pi). Treatment of infected mice with the antiviral drugs Molnupiravir (200 mg/kg, BID) or Nirmatrelvir (300 mg/kg, BID) for 3 consecutive days significantly reduced the infectious virus titers in the lungs by 1.9 and 3.8 log10 TCID50/mg tissue, respectively and significantly improved lung pathology. Together, these data demonstrate the validity of this SCID mice/beta B.1.351 variant infection model as a convenient preclinical model for assessment of potential activity of antivirals against SARS-CoV-2. Importance Unlike the ancestral SARS-CoV-2 strain, the beta (B.1.351) VoC has been reported to replicate to some extent in WT mice (species C57BL/6 and BALB/c). We here demonstrate that infection of SCID mice with SARS-CoV-2 beta variant results in high viral loads in the lungs on day 3 post-infection (pi). Treatment of infected mice with the antiviral drugs Molnupiravir or Nirmatrelvir for 3 consecutive days markedly reduced the infectious virus titers in the lungs and improved lung pathology. The advantages of using this mouse model over the standard hamster infection models to assess the in vivo efficacy of small molecule antiviral drugs are (i) the use of a clinical isolate without the need to use mouse-adapted strains or genetically modified animals (ii) lower amount of the test drug is needed and (ii) more convenient housing conditions compared to bigger rodents such as hamsters.

2.
Front Immunol ; 13: 845969, 2022.
Article in English | MEDLINE | ID: covidwho-1775680

ABSTRACT

To control the coronavirus disease 2019 (COVID-19) pandemic and the emergence of different variants of concern (VoCs), novel vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are needed. In this study, we report the potent immunogenicity and efficacy induced in hamsters by a vaccine candidate based on a modified vaccinia virus Ankara (MVA) vector expressing a human codon optimized full-length SARS-CoV-2 spike (S) protein (MVA-S). Immunization with one or two doses of MVA-S elicited high titers of S- and receptor-binding domain (RBD)-binding IgG antibodies and neutralizing antibodies against parental SARS-CoV-2 and VoC alpha, beta, gamma, delta, and omicron. After SARS-CoV-2 challenge, MVA-S-vaccinated hamsters showed a significantly strong reduction of viral RNA and infectious virus in the lungs compared to the MVA-WT control group. Moreover, a marked reduction in lung histopathology was also observed in MVA-S-vaccinated hamsters. These results favor the use of MVA-S as a potential vaccine candidate for SARS-CoV-2 in clinical trials.


Subject(s)
COVID-19 , Animals , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Cricetinae , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Vaccinia virus/genetics
3.
Antiviral Res ; 202: 105311, 2022 06.
Article in English | MEDLINE | ID: covidwho-1773103

ABSTRACT

Nelfinavir is an HIV protease inhibitor that has been widely prescribed as a component of highly active antiretroviral therapy, and has been reported to exert in vitro antiviral activity against SARS-CoV-2. We here assessed the effect of Nelfinavir in a SARS-CoV-2 infection model in hamsters. Despite the fact that Nelfinavir, [50 mg/kg twice daily (BID) for four consecutive days], did not reduce viral RNA load and infectious virus titres in the lung of infected animals, treatment resulted in a substantial improvement of SARS-CoV-2-induced lung pathology. This was accompanied by a dense infiltration of neutrophils in the lung interstitium which was similarly observed in non-infected hamsters. Nelfinavir resulted also in a marked increase in activated neutrophils in the blood, as observed in non-infected animals. Although Nelfinavir treatment did not alter the expression of chemoattractant receptors or adhesion molecules on human neutrophils, in vitro migration of human neutrophils to the major human neutrophil attractant CXCL8 was augmented by this protease inhibitor. Nelfinavir appears to induce an immunomodulatory effect associated with increasing neutrophil number and functionality, which may be linked to the marked improvement in SARS-CoV-2 lung pathology independent of its lack of antiviral activity. Since Nelfinavir is no longer used for the treatment of HIV, we studied the effect of two other HIV protease inhibitors, namely the combination Lopinavir/Ritonavir (Kaletra™) in this model. This combination resulted in a similar protective effect as Nelfinavir against SARS-CoV2 induced lung pathology in hamsters.


Subject(s)
COVID-19 , HIV Infections , HIV Protease Inhibitors , Animals , COVID-19/drug therapy , Cricetinae , HIV Infections/drug therapy , HIV Protease Inhibitors/pharmacology , HIV Protease Inhibitors/therapeutic use , Lopinavir/pharmacology , Lopinavir/therapeutic use , Lung , Mesocricetus , Nelfinavir/pharmacology , Nelfinavir/therapeutic use , RNA, Viral , Ritonavir/therapeutic use , SARS-CoV-2
4.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-331576

ABSTRACT

Coronaviruses use diverse Spike (S) glycoproteins to attach to host receptors and fuse with target cells. Using a broad screening approach, we isolated from SARS-CoV-2 immune donors seven monoclonal antibodies (mAbs) that bind to all human alpha and beta coronavirus S proteins. These mAbs recognize the fusion peptide and acquire high affinity and breadth through somatic mutations. Despite targeting a conserved motif, only some mAbs show broad neutralizing activity in vitro against alpha and beta coronaviruses, including Omicron BA.1 variant and bat WIV-1, and reduce viral titers and pathology in vivo. Structural and functional analyses show that the fusion peptide-specific mAbs bind with different modalities to a cryptic epitope which is concealed by prefusion-stabilizing 2P mutations and becomes exposed upon binding of ACE2 or ACE2-mimicking mAbs. This study identifies a new class of pan-coronavirus neutralizing mAbs and reveals a receptor-induced conformational change in the S protein that exposes the fusion peptide region.

5.
Microorganisms ; 10(3)2022 Mar 16.
Article in English | MEDLINE | ID: covidwho-1742552

ABSTRACT

Ivermectin, an FDA-approved antiparasitic drug, has been reported to have in vitro activity against SARS-CoV-2. Increased off-label use of ivermectin for COVID-19 has been reported. We here assessed the effect of ivermectin in Syrian hamsters infected with the SARS-CoV-2 Beta (B.1.351) variant. Infected animals received a clinically relevant dose of ivermectin (0.4 mg/kg subcutaneously dosed) once daily for four consecutive days after which the effect was quantified. Ivermectin monotherapy did not reduce lung viral load and even significantly worsened SARS-CoV-2-induced lung pathology. Additionally, it did not potentiate the activity of molnupiravir (LagevrioTM) when combined with this drug. This study contributes to the growing body of evidence that ivermectin does not result in a beneficial effect in the treatment of COVID-19. These findings are important given the increasing, dangerous off-label use of ivermectin for the treatment of COVID-19.

6.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-329351

ABSTRACT

Ivermectin, an FDA-approved antiparasitic drug, has been reported to have in vitro activity against SARS-CoV-2. An increasing off-label use of Ivermectin for COVID-19 has been reported. We here assessed the effect of Ivermectin in Syrian hamsters infected with the SARS-CoV-2 Beta (B.1.351) variant. Infected animals received a clinically relevant dose of Ivermectin (0.4 mg/kg subcutaneously dosed) once daily for four consecutive days after which the effect was quantified. Ivermectin monotherapy did not reduce lung viral load and even significantly worsened the SARS-CoV-2-induced lung pathology. Additionally, it did not potentiate the activity of Molnupiravir (Lagevrio™) when combined with this drug. This study contributes to the growing body of evidence that Ivermectin does not result in a beneficial effect in the treatment of COVID-19. These findings are important given the increasing, dangerous off-label use of Ivermectin for the treatment of COVID-19.

7.
Nat Commun ; 13(1): 719, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1692616

ABSTRACT

There is an urgent need for potent and selective antivirals against SARS-CoV-2. Pfizer developed PF-07321332 (PF-332), a potent inhibitor of the viral main protease (Mpro, 3CLpro) that can be dosed orally and that is in clinical development. We here report that PF-332 exerts equipotent in vitro activity against the four SARS-CoV-2 variants of concerns (VoC) and that it can completely arrest replication of the alpha variant in primary human airway epithelial cells grown at the air-liquid interface. Treatment of Syrian Golden hamsters with PF-332 (250 mg/kg, twice daily) completely protected the animals against intranasal infection with the beta (B.1.351) and delta (B.1.617.2) SARS-CoV-2 variants. Moreover, treatment of SARS-CoV-2 (B.1.617.2) infected animals with PF-332 completely prevented transmission to untreated co-housed sentinels.


Subject(s)
COVID-19/drug therapy , Disease Models, Animal , Lactams/administration & dosage , Leucine/administration & dosage , Nitriles/administration & dosage , Proline/administration & dosage , SARS-CoV-2/drug effects , Viral Protease Inhibitors/administration & dosage , A549 Cells , Administration, Oral , Animals , COVID-19/prevention & control , COVID-19/transmission , COVID-19/virology , Chlorocebus aethiops , Coronavirus 3C Proteases/antagonists & inhibitors , Cricetinae , Humans , Lactams/pharmacokinetics , Leucine/pharmacokinetics , Mesocricetus , Nitriles/pharmacokinetics , Proline/pharmacokinetics , Respiratory Mucosa/drug effects , Respiratory Mucosa/virology , SARS-CoV-2/enzymology , SARS-CoV-2/physiology , Vero Cells , Viral Protease Inhibitors/pharmacokinetics , Virus Replication/drug effects
8.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-323197

ABSTRACT

Epidemiological and clinical reports have indicated that the host immune response to SARS-CoV-2, more so than viral factors, determines COVID-19 disease severity. To elucidate the immunopathology underlying COVID-19 severity, cytokine and multiplex immune profiling was performed in mild-moderate and critically-ill COVID-19 patients. Hypercytokinemia in COVID-19 differed from the IFN-γ-driven cytokine storm in macrophage activation syndrome, and was more pronounced in critical versus mild-moderate COVID-19. Systems modelling of cytokine levels followed by deep-immune profiling showed that classical monocytes drive this hyper-inflammatory phenotype and that a reduction in T-lymphocytes correlates with disease severity, with CD8+ cells being disproportionately affected. Expression of antigen presenting machinery was reduced in critical disease, while also neutrophils contributed to disease severity and local tissue damage by amplifying hypercytokinemia and neutrophil extracellular trap formation. We suggest a myeloid-driven immunopathology, in which hyperactivated neutrophils and an ineffective adaptive immune system act as mediators of COVID-19 disease severity.

9.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-315433

ABSTRACT

Background: Drug repurposing is an attractive strategy to rapidly develop affordable therapy against COVID-19. The antifungal drug itraconazole exerts in vitro activity against SARS-CoV-2 comparable to that of hydroxychloroquine. Preclinical and clinical studies are required to investigate if itraconazole is effective for the treatment and/or prevention of COVID-19. Methods: Due to the initial absence of preclinical models the effect of itraconazole was explored in a clinical, proof-of-concept, open-label, single-center study, in which hospitalized patients with COVID-19 were randomly assigned to receive standard of care with or without itraconazole. The primary outcome was the cumulative score of the clinical status until day 15 based on the 7-point ordinal scale of the World Health Organization. Other outcomes included time to sustained clinical improvement, duration of supplemental oxygen and evolution of nasopharyngeal viral load. In parallel, itraconazole was evaluated in a newly established hamster model of acute SARS-CoV-2 infection and transmission, as soon as the model was validated. Findings: In the hamster acute infection model, itraconazole did not reduce viral load in lungs, stools or ileum, despite adequate plasma and lung drug concentrations. In the transmission model, itraconazole failed to prevent viral transmission. The clinical trial was prematurely discontinued after evaluation of the preclinical studies and interim analysis that showed no trends for a more favorable outcome with itraconazole: mean cumulative score of the clinical status 49 vs 47, ratio of geometric means 1.01 (95% CI 0.85 to 1.19), median time to clinical improvement 10 vs 9 days, hazard ratio 0.94 (95% CI 0.56 to 1.60) for itraconazole vs standard of care. Interpretation: Despite in vitro activity, itraconazole was not effective in a preclinical COVID-19 hamster model. A proof-of-concept clinical study was ended prematurely because of futility. Trial Registration: (EudraCT 2020-001243-15)Funding: Covid-19-Fund KU Leuven, Research Foundation - Flanders (FWO), Horizon 2020, Bill and Melinda Gates FoundationDeclaration of Interests: Initial dug screening and discovery of the antiviral effect of itraconazole was done in collaboration with Johnson & Johnson and described in a separate manuscript. Scientists from Johnson & Johnson also performed drug measurements on hamster samples and provided guidance on the dosing regimens for the preclinical studies. The company had no role in the design, execution, analysis, publication or funding of the clinical trial.Author Conflict of Interests: None to declare.Ethics Approval Statement: The institutional Ethical Committee approved all animal experiments (license P065-2020).The study was conducted in accordance with the International Conference on Harmonization Guidelines for Good Clinical Practice and the Declaration of Helsinki. The protocol was approved by the institutional Ethics Committee and by the Belgian Federal Agency for Medicines and Health Products (EudraCT 2020-001243-15). The trial was part of the DAWn clinical studies.

10.
Antiviral Res ; 198: 105253, 2022 02.
Article in English | MEDLINE | ID: covidwho-1654044

ABSTRACT

The emergence of SARS-CoV-2 variants of concern (VoCs) has exacerbated the COVID-19 pandemic. End of November 2021, a new SARS-CoV-2 variant namely the omicron (B.1.1.529) emerged. Since this omicron variant is heavily mutated in the spike protein, WHO classified this variant as the 5th variant of concern (VoC). We previously demonstrated that the ancestral strain and the other SARS-CoV-2 VoCs replicate efficiently in and cause a COVID19-like pathology in Syrian hamsters. We here wanted to explore the infectivity of the omicron variant in comparison to the ancestral D614G strain in the hamster model. Strikingly, in hamsters that had been infected with the omicron variant, a 3 log10 lower viral RNA load was detected in the lungs as compared to animals infected with D614G and no infectious virus was detectable in this organ. Moreover, histopathological examination of the lungs from omicron-infected hamsters revealed no signs of peri-bronchial inflammation or bronchopneumonia.


Subject(s)
COVID-19/veterinary , Disease Models, Animal , SARS-CoV-2/growth & development , Animals , Cricetinae , Humans , Lung/virology , Mesocricetus/virology , Species Specificity , Viral Load
11.
Methods Mol Biol ; 2410: 177-192, 2022.
Article in English | MEDLINE | ID: covidwho-1575553

ABSTRACT

The SARS-CoV-2 pandemic has impacted the health of humanity after the outbreak in Hubei, China in late December 2019. Ever since, it has taken unprecedented proportions and rapidity causing over a million fatal cases. Recently, a robust Syrian golden hamster model recapitulating COVID-19 was developed in search for effective therapeutics and vaccine candidates. However, overt clinical disease symptoms were largely absent despite high levels of virus replication and associated pathology in the respiratory tract. Therefore, we used micro-computed tomography (µCT) to longitudinally visualize lung pathology and to preclinically assess candidate vaccines. µCT proved to be crucial to quantify and noninvasively monitor disease progression, to evaluate candidate vaccine efficacy, and to improve screening efforts by allowing longitudinal data without harming live animals. Here, we give a comprehensive guide on how to use low-dose high-resolution µCT to follow-up SARS-CoV-2-induced disease and test the efficacy of COVID-19 vaccine candidates in hamsters. Our approach can likewise be applied for the preclinical assessment of antiviral and anti-inflammatory drug treatments in vivo.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , COVID-19/prevention & control , Cricetinae , X-Ray Microtomography
12.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-295991

ABSTRACT

All currently used first-generation COVID-19 vaccines are based on prototypic spike sequences from ancestral 2019 SARS-CoV-2 strains. However, it remains unclear to which extent vaccination protects against variants of concern (VOC) which fuel the ongoing pandemic. Here we show in a stringent hamster challenge model that immunization using prototypic spike expressed form a potent YF17D viral vector (Sanchez-Felipe et al. 2021) provides vigorous protection against infection with ancestral virus and VOC Alpha (B.1.1.7), however, is insufficient to provide optimal protection against the Beta (B.1.351) variant. To improve vaccine efficacy, a revised vaccine candidate was created that carries a modified spike antigen designed to cover the entire VOC spectrum. Vaccination of hamsters with this updated vaccine candidate provides full protection against intranasal challenge with all four VOC Alpha, Beta, Gamma (P.1) and Delta (B.1.617.2) resulting in complete elimination of infectious virus from the lungs and a marked improvement in lung pathology. Vaccinated hamsters did also no longer transmit the Delta variant to non-vaccinated sentinels. Overall, our data indicate that current first-generation COVID-19 vaccines need to be urgently updated to cover emerging sequence diversity of VOCs to maintain vaccine efficacy and to impede virus spread at the community level.

13.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-295926

ABSTRACT

We have identified camelid single-domain antibodies (VHHs) that cross-neutralize SARS-CoV-1 and −2, such as VHH72, which binds to a unique highly conserved epitope in the viral receptor-binding domain (RBD) that is difficult to access for human antibodies. Here, we establish a protein engineering path for how a stable, long-acting drug candidate can be generated out of such a VHH building block. When fused to human IgG1-Fc, the prototype VHH72 molecule prophylactically protects hamsters from SARS-CoV-2. In addition, we demonstrate that both systemic and intranasal application protects hACE-2-transgenic mice from SARS-CoV-2 induced lethal disease progression. To boost potency of the lead, we used structure-guided molecular modeling combined with rapid yeast-based Fc-fusion prototyping, resulting in the affinity-matured VHH72_S56A-Fc, with subnanomolar SARS-CoV-1 and −2 neutralizing potency. Upon humanization, VHH72_S56A was fused to a human IgG1 Fc with optimized manufacturing homogeneity and silenced effector functions for enhanced safety, and its stability as well as lack of off-target binding was extensively characterized. Therapeutic systemic administration of a low dose of VHH72_S56A-Fc antibodies strongly restricted replication of both original and D614G mutant variants of SARS-CoV-2 virus in hamsters, and minimized the development of lung damage. This work led to the selection of XVR011 for clinical development, a highly stable anti-COVID-19 biologic with excellent manufacturability. Additionally, we show that XVR011 is unaffected in its neutralizing capacity of currently rapidly spreading SARS-CoV-2 variants, and demonstrate its unique, wide scope of binding across the Sarbecovirus clades.

14.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-293110

ABSTRACT

Current licensed COVID-19 vaccines are based on antigen sequences of initial SARS-CoV-2 isolates that emerged in 2019. By mid 2021 these historical virus strains have been completely replaced by new cosmopolitan SARS-CoV-2 lineages. The ongoing pandemic has been further driven by emerging variants of concern (VOC) Alpha, Beta, Gamma and, lately predominant, Delta. These are characterized by an increased transmissibility and possible escape from naturally acquired or vaccine-induced immunity. We here show, using a YF17D-vectored first-generation COVID-19 vaccine (Sanchez-Felipe et al., 2021) and a stringent hamster challenge model (Abdelnabi et al., 2021) that the immunity elicited by a prototypic spike antigen is insufficient to provide optimal protection against the Beta VoC, urging for an antigenic update. We therefore designed an updated second-generation vaccine candidate that carries the sequence of a spike antigen that includes crucial epitopes from multiple VOCs. This vaccine candidate yielded a marked change in target antigen spectrum covered as demonstrated by (i) antigenic cartography and (ii) full protection against infection and virus-induced disease caused by any of the four VOCs (Alpha, Beta, Gamma and Delta) used for challenge. This more universal COVID-19 vaccine candidate also efficiently blocked direct transmission of VOC Delta from vaccinated infected hamsters to non-vaccinated sentinels under prolonged co-housing conditions. In conclusion, our data suggest that current first-generation COVID-19 vaccines need to be adapted to cover emerging sequence diversity of VOC to preserve vaccine efficacy and to contain virus spread at the community level.

15.
Sci Transl Med ; 13(621): eabi7826, 2021 Nov 24.
Article in English | MEDLINE | ID: covidwho-1450584

ABSTRACT

Broadly neutralizing antibodies are an important treatment for individuals with coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Antibody-based therapeutics are also essential for pandemic preparedness against future Sarbecovirus outbreaks. Camelid-derived single domain antibodies (VHHs) exhibit potent antimicrobial activity and are being developed as SARS-CoV-2­neutralizing antibody-like therapeutics. Here, we identified VHHs that neutralize both SARS-CoV-1 and SARS-CoV-2, including now circulating variants. We observed that the VHHs bound to a highly conserved epitope in the receptor binding domain of the viral spike protein that is difficult to access for human antibodies. Structure-guided molecular modeling, combined with rapid yeast-based prototyping, resulted in an affinity enhanced VHH-human immunoglobulin G1 Fc fusion molecule with subnanomolar neutralizing activity. This VHH-Fc fusion protein, produced in and purified from cultured Chinese hamster ovary cells, controlled SARS-CoV-2 replication in prophylactic and therapeutic settings in mice expressing human angiotensin converting enzyme 2 and in hamsters infected with SARS-CoV-2. These data led to affinity-enhanced selection of the VHH, XVR011, a stable anti­COVID-19 biologic that is now being evaluated in the clinic.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing , Antibodies, Viral , Humans , Models, Animal , SARS-CoV-2
16.
EBioMedicine ; 72: 103595, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1433162

ABSTRACT

BACKGROUND: Favipiravir and Molnupiravir, orally available antivirals, have been reported to exert antiviral activity against SARS-CoV-2. First efficacy data have been recently reported in COVID-19 patients. METHODS: We here report on the combined antiviral effect of both drugs in a SARS-CoV-2 Syrian hamster infection model. The infected hamsters were treated twice daily with the vehicle (the control group) or a suboptimal dose of each compound or a combination of both compounds. FINDINGS: When animals were treated with a combination of suboptimal doses of Molnupiravir and Favipiravir at the time of infection, a marked combined potency at endpoint is observed. Infectious virus titers in the lungs of animals treated with the combination are reduced by ∼5 log10 and infectious virus are no longer detected in the lungs of >60% of treated animals. When start of treatment was delayed with one day a reduction of titers in the lungs of 2.4 log10 was achieved. Moreover, treatment of infected animals nearly completely prevented transmission to co-housed untreated sentinels. Both drugs result in an increased mutation frequency of the remaining viral RNA recovered from the lungs of treated animals. In the combo-treated hamsters, an increased frequency of C-to-T mutations in the viral RNA is observed as compared to the single treatment groups which may explain the pronounced antiviral potency of the combination. INTERPRETATION: Our findings may lay the basis for the design of clinical studies to test the efficacy of the combination of Molnupiravir/Favipiravir in the treatment of COVID-19. FUNDING: stated in the acknowledgment.


Subject(s)
Amides/therapeutic use , COVID-19/drug therapy , Cytidine/analogs & derivatives , Hydroxylamines/therapeutic use , Lung/virology , Pyrazines/therapeutic use , Amides/pharmacology , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/transmission , Cytidine/pharmacology , Cytidine/therapeutic use , Disease Models, Animal , Drug Therapy, Combination , Female , Hydroxylamines/pharmacology , Mesocricetus , Pyrazines/pharmacology , RNA, Viral , Treatment Outcome , Viral Load
17.
J Infect Dis ; 224(5): 749-753, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1411568

ABSTRACT

The emergence of SARS-CoV-2 variants of concern (VoCs) has exacerbated the COVID-19 pandemic. Currently available monoclonal antibodies and vaccines appear to have reduced efficacy against some of these VoCs. Antivirals targeting conserved proteins of SARS-CoV-2 are unlikely to be affected by mutations arising in VoCs and should therefore be effective against emerging variants. We here investigate the efficacy of molnupiravir, currently in phase 2 clinical trials, in hamsters infected with Wuhan strain or B.1.1.7 and B.1.351 variants. Molnupiravir proved to be effective against infections with each of the variants and therefore may have potential combating current and future emerging VoCs.


Subject(s)
COVID-19/drug therapy , Cytidine/analogs & derivatives , Hydroxylamines/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antiviral Agents/pharmacology , COVID-19/immunology , COVID-19/virology , Cricetinae , Cytidine/pharmacology , Disease Models, Animal , Female , Humans , Mutation/drug effects , Pandemics/prevention & control , SARS-CoV-2/immunology
19.
EBioMedicine ; 68: 103403, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1245928

ABSTRACT

BACKGROUND: Within one year after its emergence, more than 108 million people acquired SARS-CoV-2 and almost 2·4 million succumbed to COVID-19. New SARS-CoV-2 variants of concern (VoC) are emerging all over the world, with the threat of being more readily transmitted, being more virulent, or escaping naturally acquired and vaccine-induced immunity. At least three major prototypic VoC have been identified, i.e. the United Kingdom, UK (B.1.1.7), South African (B.1.351) and Brazilian (B.1.1.28.1) variants. These are replacing formerly dominant strains and sparking new COVID-19 epidemics. METHODS: We studied the effect of infection with prototypic VoC from both B.1.1.7 and B.1.351 variants in female Syrian golden hamsters to assess their relative infectivity and virulence in direct comparison to two basal SARS-CoV-2 strains isolated in early 2020. FINDINGS: A very efficient infection of the lower respiratory tract of hamsters by these VoC is observed. In line with clinical evidence from patients infected with these VoC, no major differences in disease outcome were observed as compared to the original strains as was quantified by (i) histological scoring, (ii) micro-computed tomography, and (iii) analysis of the expression profiles of selected antiviral and pro-inflammatory cytokine genes. Noteworthy however, in hamsters infected with VoC B.1.1.7, a particularly strong elevation of proinflammatory cytokines was detected. INTERPRETATION: We established relevant preclinical infection models that will be pivotal to assess the efficacy of current and future vaccine(s) (candidates) as well as therapeutics (small molecules and antibodies) against two important SARS-CoV-2 VoC. FUNDING: Stated in the acknowledgment.


Subject(s)
COVID-19/pathology , Cytokines/genetics , Respiratory System/virology , SARS-CoV-2/pathogenicity , Animals , COVID-19/diagnostic imaging , COVID-19/genetics , Disease Models, Animal , Evolution, Molecular , Female , Gene Expression Profiling , Gene Expression Regulation , Mesocricetus , Respiratory System/diagnostic imaging , Respiratory System/pathology , SARS-CoV-2/classification , SARS-CoV-2/immunology , Virulence , X-Ray Microtomography
20.
EBioMedicine ; 66: 103288, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1141720

ABSTRACT

BACKGROUND: The antifungal drug itraconazole exerts in vitro activity against SARS-CoV-2 in Vero and human Caco-2 cells. Preclinical and clinical studies are required to investigate if itraconazole is effective for the treatment and/or prevention of COVID-19. METHODS: Due to the initial absence of preclinical models, the effect of itraconazole was explored in a clinical, proof-of-concept, open-label, single-center study, in which hospitalized COVID-19 patients were randomly assigned to standard of care with or without itraconazole. Primary outcome was the cumulative score of the clinical status until day 15 based on the 7-point ordinal scale of the World Health Organization. In parallel, itraconazole was evaluated in a newly established hamster model of acute SARS-CoV-2 infection and transmission, as soon as the model was validated. FINDINGS: In the hamster acute infection model, itraconazole did not reduce viral load in lungs, stools or ileum, despite adequate plasma and lung drug concentrations. In the transmission model, itraconazole failed to prevent viral transmission. The clinical trial was prematurely discontinued after evaluation of the preclinical studies and because an interim analysis showed no signal for a more favorable outcome with itraconazole: mean cumulative score of the clinical status 49 vs 47, ratio of geometric means 1.01 (95% CI 0.85 to 1.19) for itraconazole vs standard of care. INTERPRETATION: Despite in vitro activity, itraconazole was not effective in a preclinical COVID-19 hamster model. This prompted the premature termination of the proof-of-concept clinical study. FUNDING: KU Leuven, Research Foundation - Flanders (FWO), Horizon 2020, Bill and Melinda Gates Foundation.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Itraconazole/pharmacology , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , COVID-19/etiology , COVID-19/transmission , Chlorocebus aethiops , Disease Models, Animal , Drug Evaluation, Preclinical , Female , Humans , Itraconazole/administration & dosage , Itraconazole/pharmacokinetics , Itraconazole/therapeutic use , Male , Mesocricetus , Middle Aged , Pneumonia, Viral/drug therapy , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Proof of Concept Study , SARS-CoV-2/drug effects , Treatment Outcome , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL