Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Front Immunol ; 13: 834988, 2022.
Article in English | MEDLINE | ID: covidwho-1817941

ABSTRACT

Patients with COVID-19 present with a wide variety of clinical manifestations. Thromboembolic events constitute a significant cause of morbidity and mortality in patients infected with SARS-CoV-2. Severe COVID-19 has been associated with hyperinflammation and pre-existing cardiovascular disease. Platelets are important mediators and sensors of inflammation and are directly affected by cardiovascular stressors. In this report, we found that platelets from severely ill, hospitalized COVID-19 patients exhibited higher basal levels of activation measured by P-selectin surface expression and had poor functional reserve upon in vitro stimulation. To investigate this question in more detail, we developed an assay to assess the capacity of plasma from COVID-19 patients to activate platelets from healthy donors. Platelet activation was a common feature of plasma from COVID-19 patients and correlated with key measures of clinical outcome including kidney and liver injury, and APACHEIII scores. Further, we identified ferritin as a pivotal clinical marker associated with platelet hyperactivation. The COVID-19 plasma-mediated effect on control platelets was highest for patients that subsequently developed inpatient thrombotic events. Proteomic analysis of plasma from COVID-19 patients identified key mediators of inflammation and cardiovascular disease that positively correlated with in vitro platelet activation. Mechanistically, blocking the signaling of the FcγRIIa-Syk and C5a-C5aR pathways on platelets, using antibody-mediated neutralization, IgG depletion or the Syk inhibitor fostamatinib, reversed this hyperactivity driven by COVID-19 plasma and prevented platelet aggregation in endothelial microfluidic chamber conditions. These data identified these potentially actionable pathways as central for platelet activation and/or vascular complications and clinical outcomes in COVID-19 patients. In conclusion, we reveal a key role of platelet-mediated immunothrombosis in COVID-19 and identify distinct, clinically relevant, targetable signaling pathways that mediate this effect.


Subject(s)
Blood Platelets/immunology , COVID-19/immunology , Complement C5a/metabolism , Receptor, Anaphylatoxin C5a/metabolism , Receptors, IgG/metabolism , SARS-CoV-2/physiology , Thromboembolism/immunology , Adult , Aminopyridines/pharmacology , Cells, Cultured , Female , Hospitalization , Humans , Male , Morpholines/pharmacology , Platelet Activation , Pyrimidines/pharmacology , Severity of Illness Index , Signal Transduction , Syk Kinase/antagonists & inhibitors
2.
Cell ; 2022 Apr 08.
Article in English | MEDLINE | ID: covidwho-1778028

ABSTRACT

We examined antibody and memory B cell responses longitudinally for ∼9-10 months after primary 2-dose SARS-CoV-2 mRNA vaccination and 3 months after a 3rd dose. Antibody decay stabilized between 6 and 9 months, and antibody quality continued to improve for at least 9 months after 2-dose vaccination. Spike- and RBD-specific memory B cells remained durable over time, and 40%-50% of RBD-specific memory B cells simultaneously bound the Alpha, Beta, Delta, and Omicron variants. Omicron-binding memory B cells were efficiently reactivated by a 3rd dose of wild-type vaccine and correlated with the corresponding increase in neutralizing antibody titers. In contrast, pre-3rd dose antibody titers inversely correlated with the fold-change of antibody boosting, suggesting that high levels of circulating antibodies may limit the added protection afforded by repeat short interval boosting. These data provide insight into the quantity and quality of mRNA-vaccine-induced immunity over time through 3 or more antigen exposures.

3.
Sci Immunol ; 7(71): eabo1303, 2022 May 20.
Article in English | MEDLINE | ID: covidwho-1759271

ABSTRACT

Durable T cell responses to SARS-CoV-2 antigens after infection or vaccination improve immune-mediated viral clearance. To date, population-based surveys of COVID-19 adaptive immunity have focused on testing for IgG antibodies that bind spike protein and/or neutralize the virus. Deployment of existing methods for measuring T cell immunity could provide a more complete profile of immune status, informing public health policies and interventions.

4.
J Infect Dis ; 2022 Feb 02.
Article in English | MEDLINE | ID: covidwho-1672211

ABSTRACT

Some risk factors for severe COVID-19 have been identified, including age, race, and obesity. However, 20-50% of severe cases occur in the absence of these factors. Cytomegalovirus (CMV) is a herpes virus that infects ~50% of all individuals worldwide and is one of the most significant non-genetic determinants of immune system. We hypothesized that latent CMV infection might influence the severity of COVID-19. Our analyses demonstrate that CMV seropositivity associates with more than twice the risk of hospitalization due to SARS-CoV-2 infection. Immune profiling of blood and CMV DNA qPCR in a subset of patients for whom respiratory tract samples were available revealed altered T cell activation profiles in absence of extensive CMV replication in the upper respiratory tract. These data suggest a potential role for CMV-driven immune perturbations in affecting the outcome of SARS-CoV-2 infection and may have implications for the discrepancies in COVID-19 severity between different human populations.

5.
Cell ; 185(6): 1008-1024.e15, 2022 03 17.
Article in English | MEDLINE | ID: covidwho-1664732

ABSTRACT

Vaccine-mediated immunity often relies on the generation of protective antibodies and memory B cells, which commonly stem from germinal center (GC) reactions. An in-depth comparison of the GC responses elicited by SARS-CoV-2 mRNA vaccines in healthy and immunocompromised individuals has not yet been performed due to the challenge of directly probing human lymph nodes. Herein, through a fine-needle aspiration-based approach, we profiled the immune responses to SARS-CoV-2 mRNA vaccines in lymph nodes of healthy individuals and kidney transplant recipients (KTXs). We found that, unlike healthy subjects, KTXs presented deeply blunted SARS-CoV-2-specific GC B cell responses coupled with severely hindered T follicular helper cell, SARS-CoV-2 receptor binding domain-specific memory B cell, and neutralizing antibody responses. KTXs also displayed reduced SARS-CoV-2-specific CD4 and CD8 T cell frequencies. Broadly, these data indicate impaired GC-derived immunity in immunocompromised individuals and suggest a GC origin for certain humoral and memory B cell responses following mRNA vaccination.

6.
Nat Commun ; 12(1): 7222, 2021 12 10.
Article in English | MEDLINE | ID: covidwho-1565718

ABSTRACT

Multi-system Inflammatory Syndrome in Children (MIS-C) is a major complication of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection in pediatric patients. Weeks after an often mild or asymptomatic initial infection with SARS-CoV-2 children may present with a severe shock-like picture and marked inflammation. Children with MIS-C present with varying degrees of cardiovascular and hyperinflammatory symptoms. Here we perform a comprehensive analysis of the plasma proteome of more than 1400 proteins in children with SARS-CoV-2. We hypothesize that the proteome would reflect heterogeneity in hyperinflammation and vascular injury, and further identify pathogenic mediators of disease. We show that protein signatures demonstrate overlap between MIS-C, and the inflammatory syndromes macrophage activation syndrome (MAS) and thrombotic microangiopathy (TMA). We demonstrate that PLA2G2A is an important marker of MIS-C that associates with TMA. We find that IFNγ responses are dysregulated in MIS-C patients, and that IFNγ levels delineate clinical heterogeneity.


Subject(s)
COVID-19/complications , Endothelium, Vascular/physiopathology , Interferon-gamma/immunology , Proteome , Systemic Inflammatory Response Syndrome/pathology , Biomarkers , COVID-19/metabolism , COVID-19/pathology , Case-Control Studies , Chemokine CXCL9 , Child , Group II Phospholipases A2 , Humans , Inflammation , Interleukin-10 , Proteomics , Systemic Inflammatory Response Syndrome/metabolism , Vascular Diseases
7.
Nat Med ; 27(11): 1990-2001, 2021 11.
Article in English | MEDLINE | ID: covidwho-1526094

ABSTRACT

SARS-CoV-2 messenger RNA vaccination in healthy individuals generates immune protection against COVID-19. However, little is known about SARS-CoV-2 mRNA vaccine-induced responses in immunosuppressed patients. We investigated induction of antigen-specific antibody, B cell and T cell responses longitudinally in patients with multiple sclerosis (MS) on anti-CD20 antibody monotherapy (n = 20) compared with healthy controls (n = 10) after BNT162b2 or mRNA-1273 mRNA vaccination. Treatment with anti-CD20 monoclonal antibody (aCD20) significantly reduced spike-specific and receptor-binding domain (RBD)-specific antibody and memory B cell responses in most patients, an effect ameliorated with longer duration from last aCD20 treatment and extent of B cell reconstitution. By contrast, all patients with MS treated with aCD20 generated antigen-specific CD4 and CD8 T cell responses after vaccination. Treatment with aCD20 skewed responses, compromising circulating follicular helper T (TFH) cell responses and augmenting CD8 T cell induction, while preserving type 1 helper T (TH1) cell priming. Patients with MS treated with aCD20 lacking anti-RBD IgG had the most severe defect in circulating TFH responses and more robust CD8 T cell responses. These data define the nature of the SARS-CoV-2 vaccine-induced immune landscape in aCD20-treated patients and provide insights into coordinated mRNA vaccine-induced immune responses in humans. Our findings have implications for clinical decision-making and public health policy for immunosuppressed patients including those treated with aCD20.


Subject(s)
COVID-19 Vaccines/therapeutic use , Multiple Sclerosis/immunology , Multiple Sclerosis/therapy , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/analysis , Antibodies, Viral/blood , Antigens, CD20/immunology , COVID-19/prevention & control , Case-Control Studies , Chlorocebus aethiops , HEK293 Cells , Humans , Immunity, Cellular , Immunity, Humoral/drug effects , Immunity, Humoral/physiology , Immunotherapy/methods , Longitudinal Studies , Multiple Sclerosis/blood , RNA, Messenger/immunology , RNA, Viral/immunology , Rituximab/pharmacology , Rituximab/therapeutic use , SARS-CoV-2/genetics , Vaccination , Vero Cells
8.
Crit Care Explor ; 3(11): e0578, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1515114

ABSTRACT

The U.S. Food and Drug Administration has to date granted approval or emergency use authorization to three vaccines against severe acute respiratory syndrome coronavirus 2 and coronavirus disease 2019. In clinical trials and real-use observational studies, the Pfizer-BioNTech BNT162b2 messenger RNA coronavirus disease 2019 vaccine, as well as the Moderna mRNA-1273 messenger RNA coronavirus disease 2019 vaccine, have demonstrated high efficacy and few adverse events. CASE SUMMARY: A 20-year-old male college student in good health developed tinnitus and hematuria shortly after vaccination and progressed swiftly to a syndrome of: systemic inflammation; acute kidney injury requiring hemodialysis; acute, bilateral, complete sensorineural hearing loss; radiographic evidence of acute multifocal ischemic strokes; pericardial effusion complicated by tamponade physiology requiring pericardial evacuation; pleural effusions requiring evacuation; and systemic capillary leak. An extensive clinical and research investigation, including cytokine analysis, whole blood cytometry by time of flight, and whole exome sequencing, did not reveal a definitive explanatory mechanism. CONCLUSION: While the overall safety profile of the BNT162b2 coronavirus disease 2019 vaccine remains excellent for the general population, rare serious events have been reported. In this report, we describe a case of multisystem inflammation and organ dysfunction of unknown mechanism beginning shortly after administration of the first dose of BNT162b2 coronavirus disease 2019 vaccine in a previously healthy recipient.

9.
Non-conventional in English | MEDLINE, Grey literature | ID: grc-750509

ABSTRACT

Limited data are available for pregnant women affected by SARS-CoV-2. Serological tests are critically important to determine exposure and immunity to SARS-CoV-2 within both individuals and populations. We completed SARS-CoV-2 serological testing of 1,293 parturient women at two centers in Philadelphia from April 4 to June 3, 2020. We tested 834 pre-pandemic samples collected in 2019 and 15 samples from COVID-19 recovered donors to validate our assay, which has a ~1% false positive rate. We found 80/1,293 (6.2%) of parturient women possessed IgG and/or IgM SARS-CoV-2-specific antibodies. We found race/ethnicity differences in seroprevalence rates, with higher rates in Black/non-Hispanic and Hispanic/Latino women. Of the 72 seropositive women who also received nasopharyngeal polymerase chain reaction testing during pregnancy, 46 (64%) were positive. Continued serologic surveillance among pregnant women may inform perinatal clinical practices and can potentially be used to estimate seroprevalence within the community.

10.
Science ; 374(6572): abm0829, 2021 Dec 03.
Article in English | MEDLINE | ID: covidwho-1467659

ABSTRACT

The durability of immune memory after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) messenger RNA (mRNA) vaccination remains unclear. In this study, we longitudinally profiled vaccine responses in SARS-CoV-2­naïve and ­recovered individuals for 6 months after vaccination. Antibodies declined from peak levels but remained detectable in most subjects at 6 months. By contrast, mRNA vaccines generated functional memory B cells that increased from 3 to 6 months postvaccination, with the majority of these cells cross-binding the Alpha, Beta, and Delta variants. mRNA vaccination further induced antigen-specific CD4+ and CD8+ T cells, and early CD4+ T cell responses correlated with long-term humoral immunity. Recall responses to vaccination in individuals with preexisting immunity primarily increased antibody levels without substantially altering antibody decay rates. Together, these findings demonstrate robust cellular immune memory to SARS-CoV-2 and its variants for at least 6 months after mRNA vaccination.


Subject(s)
COVID-19 Vaccines/immunology , Immunologic Memory , SARS-CoV-2/genetics , SARS-CoV-2/immunology , /immunology , Humans
11.
Immunity ; 54(9): 2133-2142.e3, 2021 09 14.
Article in English | MEDLINE | ID: covidwho-1433401

ABSTRACT

SARS-CoV-2 mRNA vaccines have shown remarkable clinical efficacy, but questions remain about the nature and kinetics of T cell priming. We performed longitudinal antigen-specific T cell analyses on healthy SARS-CoV-2-naive and recovered individuals prior to and following mRNA prime and boost vaccination. Vaccination induced rapid antigen-specific CD4+ T cell responses in naive subjects after the first dose, whereas CD8+ T cell responses developed gradually and were variable in magnitude. Vaccine-induced Th1 and Tfh cell responses following the first dose correlated with post-boost CD8+ T cells and neutralizing antibodies, respectively. Integrated analysis revealed coordinated immune responses with distinct trajectories in SARS-CoV-2-naive and recovered individuals. Last, whereas booster vaccination improved T cell responses in SARS-CoV-2-naive subjects, the second dose had little effect in SARS-CoV-2-recovered individuals. These findings highlight the role of rapidly primed CD4+ T cells in coordinating responses to the second vaccine dose in SARS-CoV-2-naive individuals.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/physiology , Th1 Cells/immunology , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Female , Humans , Immunity, Cellular , Immunity, Humoral , Immunization, Secondary , Immunologic Memory , Lectins, C-Type/metabolism , Lymphocyte Activation , Male , Middle Aged , Peptides/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Young Adult
12.
Nat Med ; 27(11): 1990-2001, 2021 11.
Article in English | MEDLINE | ID: covidwho-1410406

ABSTRACT

SARS-CoV-2 messenger RNA vaccination in healthy individuals generates immune protection against COVID-19. However, little is known about SARS-CoV-2 mRNA vaccine-induced responses in immunosuppressed patients. We investigated induction of antigen-specific antibody, B cell and T cell responses longitudinally in patients with multiple sclerosis (MS) on anti-CD20 antibody monotherapy (n = 20) compared with healthy controls (n = 10) after BNT162b2 or mRNA-1273 mRNA vaccination. Treatment with anti-CD20 monoclonal antibody (aCD20) significantly reduced spike-specific and receptor-binding domain (RBD)-specific antibody and memory B cell responses in most patients, an effect ameliorated with longer duration from last aCD20 treatment and extent of B cell reconstitution. By contrast, all patients with MS treated with aCD20 generated antigen-specific CD4 and CD8 T cell responses after vaccination. Treatment with aCD20 skewed responses, compromising circulating follicular helper T (TFH) cell responses and augmenting CD8 T cell induction, while preserving type 1 helper T (TH1) cell priming. Patients with MS treated with aCD20 lacking anti-RBD IgG had the most severe defect in circulating TFH responses and more robust CD8 T cell responses. These data define the nature of the SARS-CoV-2 vaccine-induced immune landscape in aCD20-treated patients and provide insights into coordinated mRNA vaccine-induced immune responses in humans. Our findings have implications for clinical decision-making and public health policy for immunosuppressed patients including those treated with aCD20.


Subject(s)
COVID-19 Vaccines/therapeutic use , Multiple Sclerosis/immunology , Multiple Sclerosis/therapy , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/analysis , Antibodies, Viral/blood , Antigens, CD20/immunology , COVID-19/prevention & control , Case-Control Studies , Chlorocebus aethiops , HEK293 Cells , Humans , Immunity, Cellular , Immunity, Humoral/drug effects , Immunity, Humoral/physiology , Immunotherapy/methods , Longitudinal Studies , Multiple Sclerosis/blood , RNA, Messenger/immunology , RNA, Viral/immunology , Rituximab/pharmacology , Rituximab/therapeutic use , SARS-CoV-2/genetics , Vaccination , Vero Cells
13.
Nat Commun ; 12(1): 5417, 2021 09 14.
Article in English | MEDLINE | ID: covidwho-1410404

ABSTRACT

COVID-19 is associated with a wide range of clinical manifestations, including autoimmune features and autoantibody production. Here we develop three protein arrays to measure IgG autoantibodies associated with connective tissue diseases, anti-cytokine antibodies, and anti-viral antibody responses in serum from 147 hospitalized COVID-19 patients. Autoantibodies are identified in approximately 50% of patients but in less than 15% of healthy controls. When present, autoantibodies largely target autoantigens associated with rare disorders such as myositis, systemic sclerosis and overlap syndromes. A subset of autoantibodies targeting traditional autoantigens or cytokines develop de novo following SARS-CoV-2 infection. Autoantibodies track with longitudinal development of IgG antibodies recognizing SARS-CoV-2 structural proteins and a subset of non-structural proteins, but not proteins from influenza, seasonal coronaviruses or other pathogenic viruses. We conclude that SARS-CoV-2 causes development of new-onset IgG autoantibodies in a significant proportion of hospitalized COVID-19 patients and are positively correlated with immune responses to SARS-CoV-2 proteins.


Subject(s)
Autoantibodies/immunology , COVID-19/immunology , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Aged , Antibodies, Antinuclear/blood , Antibodies, Antinuclear/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Autoantibodies/blood , Autoantigens/immunology , Connective Tissue Diseases/immunology , Cytokines/immunology , Female , Hospitalization , Humans , Immunoglobulin G/blood , Male , Middle Aged , SARS-CoV-2/pathogenicity , Viral Proteins/immunology
14.
JCI Insight ; 6(16)2021 08 23.
Article in English | MEDLINE | ID: covidwho-1369459

ABSTRACT

Some studies suggest that recent common coronavirus (CCV) infections are associated with reduced COVID-19 severity upon SARS-CoV-2 infection. We completed serological assays using samples collected from health care workers to identify antibody types associated with SARS-CoV-2 protection and COVID-19 symptom duration. Rare SARS-CoV-2 cross-reactive antibodies elicited by past CCV infections were not associated with protection; however, the duration of symptoms following SARS-CoV-2 infections was significantly reduced in individuals with higher common betacoronavirus (ßCoV) antibody titers. Since antibody titers decline over time after CCV infections, individuals in our cohort with higher ßCoV antibody titers were more likely recently infected with common ßCoVs compared with individuals with lower antibody titers. Therefore, our data suggest that recent ßCoV infections potentially limit the duration of symptoms following SARS-CoV-2 infections through mechanisms that do not involve cross-reactive antibodies. Our data are consistent with the emerging hypothesis that cellular immune responses elicited by recent common ßCoV infections transiently reduce symptom duration following SARS-CoV-2 infections.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , COVID-19/immunology , Health Personnel , SARS-CoV-2/immunology , Adult , Cross Reactions , Female , Humans , Male , Middle Aged , Time Factors
15.
mBio ; 12(4): e0177721, 2021 08 31.
Article in English | MEDLINE | ID: covidwho-1360545

ABSTRACT

Viral infection of the respiratory tract can be associated with propagating effects on the airway microbiome, and microbiome dysbiosis may influence viral disease. Here, we investigated the respiratory tract microbiome in coronavirus disease 2019 (COVID-19) and its relationship to disease severity, systemic immunologic features, and outcomes. We examined 507 oropharyngeal, nasopharyngeal, and endotracheal samples from 83 hospitalized COVID-19 patients as well as non-COVID patients and healthy controls. Bacterial communities were interrogated using 16S rRNA gene sequencing, and the commensal DNA viruses Anelloviridae and Redondoviridae were quantified by qPCR. We found that COVID-19 patients had upper respiratory microbiome dysbiosis and greater change over time than critically ill patients without COVID-19. Oropharyngeal microbiome diversity at the first time point correlated inversely with disease severity during hospitalization. Microbiome composition was also associated with systemic immune parameters in blood, as measured by lymphocyte/neutrophil ratios and immune profiling of peripheral blood mononuclear cells. Intubated patients showed patient-specific lung microbiome communities that were frequently highly dynamic, with prominence of Staphylococcus. Anelloviridae and Redondoviridae showed more frequent colonization and higher titers in severe disease. Machine learning analysis demonstrated that integrated features of the microbiome at early sampling points had high power to discriminate ultimate level of COVID-19 severity. Thus, the respiratory tract microbiome and commensal viruses are disturbed in COVID-19 and correlate with systemic immune parameters, and early microbiome features discriminate disease severity. Future studies should address clinical consequences of airway dysbiosis in COVID-19, its possible use as biomarkers, and the role of bacterial and viral taxa identified here in COVID-19 pathogenesis. IMPORTANCE COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of the respiratory tract, results in highly variable outcomes ranging from minimal illness to death, but the reasons for this are not well understood. We investigated the respiratory tract bacterial microbiome and small commensal DNA viruses in hospitalized COVID-19 patients and found that each was markedly abnormal compared to that in healthy people and differed from that in critically ill patients without COVID-19. Early airway samples tracked with the level of COVID-19 illness reached during hospitalization, and the airway microbiome also correlated with immune parameters in blood. These findings raise questions about the mechanisms linking SARS-CoV-2 infection and other microbial inhabitants of the airway, including whether the microbiome might regulate severity of COVID-19 disease and/or whether early microbiome features might serve as biomarkers to discriminate disease severity.


Subject(s)
Bacteria/classification , Dysbiosis/microbiology , Lung/microbiology , Nasopharynx/microbiology , Oropharynx/microbiology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Anelloviridae/classification , Anelloviridae/genetics , Anelloviridae/isolation & purification , Bacteria/genetics , Bacteria/isolation & purification , COVID-19/pathology , Female , Humans , Lymphocyte Count , Male , Microbiota , Middle Aged , RNA, Ribosomal, 16S/genetics , Severity of Illness Index
16.
Sci Immunol ; 6(58)2021 04 15.
Article in English | MEDLINE | ID: covidwho-1349998

ABSTRACT

Novel mRNA vaccines for SARS-CoV-2 have been authorized for emergency use. Despite their efficacy in clinical trials, data on mRNA vaccine-induced immune responses are mostly limited to serological analyses. Here, we interrogated antibody and antigen-specific memory B cells over time in 33 SARS-CoV-2 naïve and 11 SARS-CoV-2 recovered subjects. SARS-CoV-2 naïve individuals required both vaccine doses for optimal increases in antibodies, particularly for neutralizing titers against the B.1.351 variant. Memory B cells specific for full-length spike protein and the spike receptor binding domain (RBD) were also efficiently primed by mRNA vaccination and detectable in all SARS-CoV-2 naive subjects after the second vaccine dose, though the memory B cell response declined slightly with age. In SARS-CoV-2 recovered individuals, antibody and memory B cell responses were significantly boosted after the first vaccine dose; however, there was no increase in circulating antibodies, neutralizing titers, or antigen-specific memory B cells after the second dose. This robust boosting after the first vaccine dose strongly correlated with levels of pre-existing memory B cells in recovered individuals, identifying a key role for memory B cells in mounting recall responses to SARS-CoV-2 antigens. Together, our data demonstrated robust serological and cellular priming by mRNA vaccines and revealed distinct responses based on prior SARS-CoV-2 exposure, whereby COVID-19 recovered subjects may only require a single vaccine dose to achieve peak antibody and memory B cell responses. These findings also highlight the utility of defining cellular responses in addition to serologies and may inform SARS-CoV-2 vaccine distribution in a resource-limited setting.


Subject(s)
Antibodies, Viral/immunology , B-Lymphocytes/immunology , COVID-19 Vaccines , COVID-19/immunology , SARS-CoV-2/immunology , Vaccines, Synthetic , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Female , Humans , Male , Middle Aged , RNA, Messenger , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Young Adult
17.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L485-L489, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1299247

ABSTRACT

COVID-19, the disease caused by the SARS-CoV-2 virus, can progress to multisystem organ failure and viral sepsis characterized by respiratory failure, arrhythmias, thromboembolic complications, and shock with high mortality. Autopsy and preclinical evidence implicate aberrant complement activation in endothelial injury and organ failure. Erythrocytes express complement receptors and are capable of binding immune complexes; therefore, we investigated complement activation in patients with COVID-19 using erythrocytes as a tool to diagnose complement activation. We discovered enhanced C3b and C4d deposition on erythrocytes in COVID-19 sepsis patients and non-COVID sepsis patients compared with healthy controls, supporting the role of complement in sepsis-associated organ injury. Our data suggest that erythrocytes may contribute to a precision medicine approach to sepsis and have diagnostic value in monitoring complement dysregulation in COVID-19-sepsis and non-COVID sepsis and identifying patients who may benefit from complement targeted therapies.


Subject(s)
COVID-19/complications , Complement Activation/immunology , Complement C3b/immunology , Complement C4b/immunology , Erythrocytes/immunology , Peptide Fragments/immunology , Respiratory Insufficiency/diagnosis , Sepsis/diagnosis , COVID-19/immunology , COVID-19/virology , Complement C3b/metabolism , Complement C4b/metabolism , Erythrocytes/metabolism , Erythrocytes/virology , Female , Humans , Male , Middle Aged , Peptide Fragments/metabolism , Respiratory Insufficiency/immunology , Respiratory Insufficiency/metabolism , Respiratory Insufficiency/virology , SARS-CoV-2/isolation & purification , Sepsis/immunology , Sepsis/metabolism , Sepsis/virology
18.
J Pediatric Infect Dis Soc ; 10(5): 669-673, 2021 May 28.
Article in English | MEDLINE | ID: covidwho-1262143

ABSTRACT

Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) antibody responses in children remain poorly characterized. Here, we show that pediatric patients with multisystem inflammatory syndrome in children (MIS-C) possess higher SARS-CoV-2 spike immunoglobulin G (IgG) titers compared with those with severe coronavirus disease 2019, likely reflecting a longer time since the onset of infection in MIS-C patients.


Subject(s)
Antibodies, Viral/immunology , Antibody Formation , COVID-19/immunology , Spike Glycoprotein, Coronavirus/immunology , Systemic Inflammatory Response Syndrome/immunology , COVID-19 Serological Testing , Child , Female , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Male , SARS-CoV-2 , Severity of Illness Index
19.
Cancer Discov ; 11(2): 233-236, 2021 02.
Article in English | MEDLINE | ID: covidwho-1140381

ABSTRACT

Published series on COVID-19 support the notion that patients with cancer are a particularly vulnerable population. There is a confluence of risk factors between cancer and COVID-19, and cancer care and treatments increase exposure to the virus and may dampen natural immune responses. The available evidence supports the conclusion that patients with cancer, in particular with hematologic malignancies, should be considered among the very high-risk groups for priority COVID-19 vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , Health Care Rationing/organization & administration , Hematologic Neoplasms/complications , Hematologic Neoplasms/epidemiology , Humans , Immunity , Immunization Programs/organization & administration , Odds Ratio , Proportional Hazards Models , Public Health/methods , Risk , Risk Factors , Treatment Outcome , Vaccination
20.
Sci Immunol ; 6(57)2021 03 02.
Article in English | MEDLINE | ID: covidwho-1115087

ABSTRACT

Pediatric COVID-19 following SARS-CoV-2 infection is associated with fewer hospitalizations and often milder disease than in adults. A subset of children, however, present with Multisystem Inflammatory Syndrome in Children (MIS-C) that can lead to vascular complications and shock, but rarely death. The immune features of MIS-C compared to pediatric COVID-19 or adult disease remain poorly understood. We analyzed peripheral blood immune responses in hospitalized SARS-CoV-2 infected pediatric patients (pediatric COVID-19) and patients with MIS-C. MIS-C patients had patterns of T cell-biased lymphopenia and T cell activation similar to severely ill adults, and all patients with MIS-C had SARS-CoV-2 spike-specific antibodies at admission. A distinct feature of MIS-C patients was robust activation of vascular patrolling CX3CR1+ CD8+ T cells that correlated with the use of vasoactive medication. Finally, whereas pediatric COVID-19 patients with acute respiratory distress syndrome (ARDS) had sustained immune activation, MIS-C patients displayed clinical improvement over time, concomitant with decreasing immune activation. Thus, non-MIS-C versus MIS-C SARS-CoV-2 associated illnesses are characterized by divergent immune signatures that are temporally distinct from one another and implicate CD8+ T cells in the clinical presentation and trajectory of MIS-C.


Subject(s)
COVID-19/immunology , Lymphocyte Activation , Systemic Inflammatory Response Syndrome/immunology , T-Lymphocytes/immunology , Adolescent , Adult , Aging/immunology , Child , Child, Preschool , Female , Flow Cytometry , Humans , Leukopenia/immunology , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL