Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
J Am Med Inform Assoc ; 28(2): 393-401, 2021 02 15.
Article in English | MEDLINE | ID: covidwho-1054313


Our goal is to summarize the collective experience of 15 organizations in dealing with uncoordinated efforts that result in unnecessary delays in understanding, predicting, preparing for, containing, and mitigating the COVID-19 pandemic in the US. Response efforts involve the collection and analysis of data corresponding to healthcare organizations, public health departments, socioeconomic indicators, as well as additional signals collected directly from individuals and communities. We focused on electronic health record (EHR) data, since EHRs can be leveraged and scaled to improve clinical care, research, and to inform public health decision-making. We outline the current challenges in the data ecosystem and the technology infrastructure that are relevant to COVID-19, as witnessed in our 15 institutions. The infrastructure includes registries and clinical data networks to support population-level analyses. We propose a specific set of strategic next steps to increase interoperability, overall organization, and efficiencies.

COVID-19 , Electronic Health Records , Information Dissemination , Information Systems/organization & administration , Public Health Practice , Academic Medical Centers , Humans , Registries , United States
medRxiv ; 2020 Oct 27.
Article in English | MEDLINE | ID: covidwho-915971


Early identification of symptoms and comorbidities most predictive of COVID-19 is critical to identify infection, guide policies to effectively contain the pandemic, and improve health systems' response. Here, we characterised socio-demographics and comorbidity in 3,316,107persons tested and 219,072 persons tested positive for SARS-CoV-2 since January 2020, and their key health outcomes in the month following the first positive test. Routine care data from primary care electronic health records (EHR) from Spain, hospital EHR from the United States (US), and claims data from South Korea and the US were used. The majority of study participants were women aged 18-65 years old. Positive/tested ratio varied greatly geographically (2.2:100 to 31.2:100) and over time (from 50:100 in February-April to 6.8:100 in May-June). Fever, cough and dyspnoea were the most common symptoms at presentation. Between 4%-38% required admission and 1-10.5% died within a month from their first positive test. Observed disparity in testing practices led to variable baseline characteristics and outcomes, both nationally (US) and internationally. Our findings highlight the importance of large scale characterization of COVID-19 international cohorts to inform planning and resource allocation including testing as countries face a second wave.

J Am Med Inform Assoc ; 28(3): 427-443, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-719257


OBJECTIVE: Coronavirus disease 2019 (COVID-19) poses societal challenges that require expeditious data and knowledge sharing. Though organizational clinical data are abundant, these are largely inaccessible to outside researchers. Statistical, machine learning, and causal analyses are most successful with large-scale data beyond what is available in any given organization. Here, we introduce the National COVID Cohort Collaborative (N3C), an open science community focused on analyzing patient-level data from many centers. MATERIALS AND METHODS: The Clinical and Translational Science Award Program and scientific community created N3C to overcome technical, regulatory, policy, and governance barriers to sharing and harmonizing individual-level clinical data. We developed solutions to extract, aggregate, and harmonize data across organizations and data models, and created a secure data enclave to enable efficient, transparent, and reproducible collaborative analytics. RESULTS: Organized in inclusive workstreams, we created legal agreements and governance for organizations and researchers; data extraction scripts to identify and ingest positive, negative, and possible COVID-19 cases; a data quality assurance and harmonization pipeline to create a single harmonized dataset; population of the secure data enclave with data, machine learning, and statistical analytics tools; dissemination mechanisms; and a synthetic data pilot to democratize data access. CONCLUSIONS: The N3C has demonstrated that a multisite collaborative learning health network can overcome barriers to rapidly build a scalable infrastructure incorporating multiorganizational clinical data for COVID-19 analytics. We expect this effort to save lives by enabling rapid collaboration among clinicians, researchers, and data scientists to identify treatments and specialized care and thereby reduce the immediate and long-term impacts of COVID-19.

COVID-19 , Data Science/organization & administration , Information Dissemination , Intersectoral Collaboration , Computer Security , Data Analysis , Ethics Committees, Research , Government Regulation , Humans , National Institutes of Health (U.S.) , United States