Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Add filters

Document Type
Year range
J Cardiovasc Pharmacol ; 77(3): 323-331, 2020 12 04.
Article in English | MEDLINE | ID: covidwho-960615


ABSTRACT: The high mortality of specific groups from COVID-19 highlights the importance of host-viral interactions and the potential benefits from enhancing host defenses. SARS-CoV-2 requires angiotensin-converting enzyme (ACE) 2 as a receptor for cell entry and infection. Although both ACE inhibitors and spironolactone can upregulate tissue ACE2, there are important points of discrimination between these approaches. The virus requires proteolytic processing of its spike protein by transmembrane protease receptor serine type 2 (TMPRSS2) to enable binding to cellular ACE2. Because TMPRSS2 contains an androgen promoter, it may be downregulated by the antiandrogenic actions of spironolactone. Furin and plasmin also process the spike protein. They are inhibited by protease nexin 1 or serpin E2 (PN1) that is upregulated by angiotensin II but downregulated by aldosterone. Therefore, spironolactone should selectively downregulate furin and plasmin. Furin also promotes pulmonary edema, whereas plasmin promotes hemovascular dysfunction. Thus, a downregulation of furin and plasmin by PN1 could be a further benefit of MRAs beyond their well-established organ protection. We review the evidence that spironolactone may be the preferred RASSi to increase PN1 and decrease TMPRSS2, furin, and plasmin activities and thereby reduce viral cell binding, entry, infectivity, and bad outcomes. This hypothesis requires direct investigation.

COVID-19 Drug Treatment , Mineralocorticoid Receptor Antagonists/therapeutic use , Renin-Angiotensin System/drug effects , Spironolactone/therapeutic use , Humans , Serine Endopeptidases/drug effects