Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Year range
1.
Infect Dis Ther ; 11(4): 1327-1341, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1906576

ABSTRACT

Tuberculous meningitis (TBM) is the most severe and disabling form of tuberculosis (TB), with at least 100,000 cases per year and a mortality rate of up to 50% in individuals co-infected with human immunodeficiency virus type 1 (HIV-1). To evaluate the efficacy and safety of an intensified anti-tubercular regimen and an anti-inflammatory treatment, the INTENSE-TBM project includes a phase III randomised clinical trial (TBM-RCT) in four countries in sub-Saharan Africa (SSA). Within this framework, we designed a comprehensive capacity-building work package ensuring all centres had, or would acquire, the ability to conduct the TBM-RCT and developing a network of skilled researchers, clinical centres and microbiology laboratories. Here, we describe these activities, identify strengths/challenges and share tools adaptable to other projects, particularly in low- and lower-middle income countries with heterogeneous settings and during the coronavirus disease 2019 (COVID-19) pandemic. Despite major challenges, TBM-RCT initiation was achieved in all sites, promoting enhanced local healthcare systems and encouraging further clinical research in SSA. In terms of certified trainings, the achievement levels were 95% (124/131) for good clinical practice, 91% (39/43) for good clinical laboratory practice and 91% (48/53) for infection prevention and control. Platform-based research, developed as part of capacity-building activities for specific projects, may be a valuable tool in fighting future infectious diseases and in developing high-level research in Africa.


The INTENSE-TBM project aimed to design a comprehensive work-package on capacity building, ensuring all centres would acquire the ability to conduct a phase III randomised clinical trial on TBM in sub-Saharan Africa, to reduce tuberculous meningitis mortality and morbidity in patients with/without HIV-1 co-infection. Therefore, the INTENSE-TBM project is an example of how an international clinical research consortium can provide opportunities to enhance local capacity building and promote centres without previous experience in clinical research. This article provides practical approaches for implementing effective capacity-building programmes. We highlight how to overcome limitations imposed by the COVID-19 pandemic to successfully complete clinics, laboratory set-ups and personnel training, so as to optimise resources and empower African institutions on a local level. At the same time, our experience shows how capacity-building programmes can deliver long-lasting impact that extends beyond the original aims of the project (e.g. HIV and TB), and support local health systems in fighting other infectious disease (e.g. COVID-19). Research projects in low- and lower-middle income countries with heterogeneous settings could stand to benefit the most.

2.
MEDLINE;
Preprint in English | MEDLINE | ID: ppcovidwho-328547

ABSTRACT

Patients with cancer have higher COVID-19 morbidity and mortality. Here we present the prospective CAPTURE study (NCT03226886) integrating longitudinal immune profiling with clinical annotation. Of 357 patients with cancer, 118 were SARS-CoV-2-positive, 94 were symptomatic and 2 patients died of COVID-19. In this cohort, 83% patients had S1-reactive antibodies, 82% had neutralizing antibodies against WT, whereas neutralizing antibody titers (NAbT) against the Alpha, Beta, and Delta variants were substantially reduced. Whereas S1-reactive antibody levels decreased in 13% of patients, NAbT remained stable up to 329 days. Patients also had detectable SARS-CoV-2-specific T cells and CD4+ responses correlating with S1-reactive antibody levels, although patients with hematological malignancies had impaired immune responses that were disease and treatment-specific, but presented compensatory cellular responses, further supported by clinical. Overall, these findings advance the understanding of the nature and duration of immune response to SARS-CoV-2 in patients with cancer.

3.
Embase;
Preprint in English | EMBASE | ID: ppcovidwho-326997

ABSTRACT

The SARS-CoV-2 Omicron variant has multiple Spike (S) protein mutations that contribute to escape from the neutralizing antibody responses, and reducing vaccine protection from infection. The extent to which other components of the adaptive response such as T cells may still target Omicron and contribute to protection from severe outcomes is unknown. We assessed the ability of T cells to react with Omicron spike in participants who were vaccinated with Ad26.CoV2.S or BNT162b2, and in unvaccinated convalescent COVID-19 patients (n = 70). We found that 70-80% of the CD4 and CD8 T cell response to spike was maintained across study groups. Moreover, the magnitude of Omicron cross-reactive T cells was similar to that of the Beta and Delta variants, despite Omicron harbouring considerably more mutations. Additionally, in Omicron-infected hospitalized patients (n = 19), there were comparable T cell responses to ancestral spike, nucleocapsid and membrane proteins to those found in patients hospitalized in previous waves dominated by the ancestral, Beta or Delta variants (n = 49). These results demonstrate that despite Omicron’s extensive mutations and reduced susceptibility to neutralizing antibodies, the majority of T cell response, induced by vaccination or natural infection, crossrecognises the variant. Well-preserved T cell immunity to Omicron is likely to contribute to protection from severe COVID-19, supporting early clinical observations from South Africa.

SELECTION OF CITATIONS
SEARCH DETAIL