Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Pediatrics ; 148(3)2021 09.
Article in English | MEDLINE | ID: covidwho-1394618

ABSTRACT

OBJECTIVES: To characterize the demographics, comorbidities, symptoms, in-hospital treatments, and health outcomes among children and adolescents diagnosed or hospitalized with coronavirus disease 2019 (COVID-19) and to compare them in secondary analyses with patients diagnosed with previous seasonal influenza in 2017-2018. METHODS: International network cohort using real-world data from European primary care records (France, Germany, and Spain), South Korean claims and US claims, and hospital databases. We included children and adolescents diagnosed and/or hospitalized with COVID-19 at age <18 between January and June 2020. We described baseline demographics, comorbidities, symptoms, 30-day in-hospital treatments, and outcomes including hospitalization, pneumonia, acute respiratory distress syndrome, multisystem inflammatory syndrome in children, and death. RESULTS: A total of 242 158 children and adolescents diagnosed and 9769 hospitalized with COVID-19 and 2 084 180 diagnosed with influenza were studied. Comorbidities including neurodevelopmental disorders, heart disease, and cancer were more common among those hospitalized with versus diagnosed with COVID-19. Dyspnea, bronchiolitis, anosmia, and gastrointestinal symptoms were more common in COVID-19 than influenza. In-hospital prevalent treatments for COVID-19 included repurposed medications (<10%) and adjunctive therapies: systemic corticosteroids (6.8%-7.6%), famotidine (9.0%-28.1%), and antithrombotics such as aspirin (2.0%-21.4%), heparin (2.2%-18.1%), and enoxaparin (2.8%-14.8%). Hospitalization was observed in 0.3% to 1.3% of the cohort diagnosed with COVID-19, with undetectable (n < 5 per database) 30-day fatality. Thirty-day outcomes including pneumonia and hypoxemia were more frequent in COVID-19 than influenza. CONCLUSIONS: Despite negligible fatality, complications including hospitalization, hypoxemia, and pneumonia were more frequent in children and adolescents with COVID-19 than with influenza. Dyspnea, anosmia, and gastrointestinal symptoms could help differentiate diagnoses. A wide range of medications was used for the inpatient management of pediatric COVID-19.


Subject(s)
COVID-19 , Adolescent , Age Distribution , COVID-19/complications , COVID-19/diagnosis , COVID-19/drug therapy , COVID-19/epidemiology , Child , Child, Preschool , Cohort Studies , Comorbidity , Databases, Factual , Diagnosis, Differential , Female , France/epidemiology , Germany/epidemiology , Hospitalization/statistics & numerical data , Humans , Infant , Infant, Newborn , Influenza, Human/complications , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Male , Republic of Korea/epidemiology , Spain/epidemiology , Symptom Assessment , Time Factors , Treatment Outcome , United States/epidemiology
2.
JAMA Netw Open ; 4(7): e2116901, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1306627

ABSTRACT

Importance: The National COVID Cohort Collaborative (N3C) is a centralized, harmonized, high-granularity electronic health record repository that is the largest, most representative COVID-19 cohort to date. This multicenter data set can support robust evidence-based development of predictive and diagnostic tools and inform clinical care and policy. Objectives: To evaluate COVID-19 severity and risk factors over time and assess the use of machine learning to predict clinical severity. Design, Setting, and Participants: In a retrospective cohort study of 1 926 526 US adults with SARS-CoV-2 infection (polymerase chain reaction >99% or antigen <1%) and adult patients without SARS-CoV-2 infection who served as controls from 34 medical centers nationwide between January 1, 2020, and December 7, 2020, patients were stratified using a World Health Organization COVID-19 severity scale and demographic characteristics. Differences between groups over time were evaluated using multivariable logistic regression. Random forest and XGBoost models were used to predict severe clinical course (death, discharge to hospice, invasive ventilatory support, or extracorporeal membrane oxygenation). Main Outcomes and Measures: Patient demographic characteristics and COVID-19 severity using the World Health Organization COVID-19 severity scale and differences between groups over time using multivariable logistic regression. Results: The cohort included 174 568 adults who tested positive for SARS-CoV-2 (mean [SD] age, 44.4 [18.6] years; 53.2% female) and 1 133 848 adult controls who tested negative for SARS-CoV-2 (mean [SD] age, 49.5 [19.2] years; 57.1% female). Of the 174 568 adults with SARS-CoV-2, 32 472 (18.6%) were hospitalized, and 6565 (20.2%) of those had a severe clinical course (invasive ventilatory support, extracorporeal membrane oxygenation, death, or discharge to hospice). Of the hospitalized patients, mortality was 11.6% overall and decreased from 16.4% in March to April 2020 to 8.6% in September to October 2020 (P = .002 for monthly trend). Using 64 inputs available on the first hospital day, this study predicted a severe clinical course using random forest and XGBoost models (area under the receiver operating curve = 0.87 for both) that were stable over time. The factor most strongly associated with clinical severity was pH; this result was consistent across machine learning methods. In a separate multivariable logistic regression model built for inference, age (odds ratio [OR], 1.03 per year; 95% CI, 1.03-1.04), male sex (OR, 1.60; 95% CI, 1.51-1.69), liver disease (OR, 1.20; 95% CI, 1.08-1.34), dementia (OR, 1.26; 95% CI, 1.13-1.41), African American (OR, 1.12; 95% CI, 1.05-1.20) and Asian (OR, 1.33; 95% CI, 1.12-1.57) race, and obesity (OR, 1.36; 95% CI, 1.27-1.46) were independently associated with higher clinical severity. Conclusions and Relevance: This cohort study found that COVID-19 mortality decreased over time during 2020 and that patient demographic characteristics and comorbidities were associated with higher clinical severity. The machine learning models accurately predicted ultimate clinical severity using commonly collected clinical data from the first 24 hours of a hospital admission.


Subject(s)
COVID-19 , Databases, Factual , Forecasting , Hospitalization , Models, Biological , Severity of Illness Index , Adult , Aged , Aged, 80 and over , COVID-19/ethnology , COVID-19/mortality , Comorbidity , Extracorporeal Membrane Oxygenation , Female , Humans , Hydrogen-Ion Concentration , Male , Middle Aged , Pandemics , Respiration, Artificial , Retrospective Studies , Risk Factors , SARS-CoV-2 , United States , Young Adult
3.
Lancet Digit Health ; 3(2): e98-e114, 2021 02.
Article in English | MEDLINE | ID: covidwho-1065706

ABSTRACT

BACKGROUND: Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) have been postulated to affect susceptibility to COVID-19. Observational studies so far have lacked rigorous ascertainment adjustment and international generalisability. We aimed to determine whether use of ACEIs or ARBs is associated with an increased susceptibility to COVID-19 in patients with hypertension. METHODS: In this international, open science, cohort analysis, we used electronic health records from Spain (Information Systems for Research in Primary Care [SIDIAP]) and the USA (Columbia University Irving Medical Center data warehouse [CUIMC] and Department of Veterans Affairs Observational Medical Outcomes Partnership [VA-OMOP]) to identify patients aged 18 years or older with at least one prescription for ACEIs and ARBs (target cohort) or calcium channel blockers (CCBs) and thiazide or thiazide-like diuretics (THZs; comparator cohort) between Nov 1, 2019, and Jan 31, 2020. Users were defined separately as receiving either monotherapy with these four drug classes, or monotherapy or combination therapy (combination use) with other antihypertensive medications. We assessed four outcomes: COVID-19 diagnosis; hospital admission with COVID-19; hospital admission with pneumonia; and hospital admission with pneumonia, acute respiratory distress syndrome, acute kidney injury, or sepsis. We built large-scale propensity score methods derived through a data-driven approach and negative control experiments across ten pairwise comparisons, with results meta-analysed to generate 1280 study effects. For each study effect, we did negative control outcome experiments using a possible 123 controls identified through a data-rich algorithm. This process used a set of predefined baseline patient characteristics to provide the most accurate prediction of treatment and balance among patient cohorts across characteristics. The study is registered with the EU Post-Authorisation Studies register, EUPAS35296. FINDINGS: Among 1 355 349 antihypertensive users (363 785 ACEI or ARB monotherapy users, 248 915 CCB or THZ monotherapy users, 711 799 ACEI or ARB combination users, and 473 076 CCB or THZ combination users) included in analyses, no association was observed between COVID-19 diagnosis and exposure to ACEI or ARB monotherapy versus CCB or THZ monotherapy (calibrated hazard ratio [HR] 0·98, 95% CI 0·84-1·14) or combination use exposure (1·01, 0·90-1·15). ACEIs alone similarly showed no relative risk difference when compared with CCB or THZ monotherapy (HR 0·91, 95% CI 0·68-1·21; with heterogeneity of >40%) or combination use (0·95, 0·83-1·07). Directly comparing ACEIs with ARBs demonstrated a moderately lower risk with ACEIs, which was significant with combination use (HR 0·88, 95% CI 0·79-0·99) and non-significant for monotherapy (0·85, 0·69-1·05). We observed no significant difference between drug classes for risk of hospital admission with COVID-19, hospital admission with pneumonia, or hospital admission with pneumonia, acute respiratory distress syndrome, acute kidney injury, or sepsis across all comparisons. INTERPRETATION: No clinically significant increased risk of COVID-19 diagnosis or hospital admission-related outcomes associated with ACEI or ARB use was observed, suggesting users should not discontinue or change their treatment to decrease their risk of COVID-19. FUNDING: Wellcome Trust, UK National Institute for Health Research, US National Institutes of Health, US Department of Veterans Affairs, Janssen Research & Development, IQVIA, South Korean Ministry of Health and Welfare Republic, Australian National Health and Medical Research Council, and European Health Data and Evidence Network.

4.
Lancet Digit Health ; 3(2): e98-e114, 2021 02.
Article in English | MEDLINE | ID: covidwho-989557

ABSTRACT

BACKGROUND: Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) have been postulated to affect susceptibility to COVID-19. Observational studies so far have lacked rigorous ascertainment adjustment and international generalisability. We aimed to determine whether use of ACEIs or ARBs is associated with an increased susceptibility to COVID-19 in patients with hypertension. METHODS: In this international, open science, cohort analysis, we used electronic health records from Spain (Information Systems for Research in Primary Care [SIDIAP]) and the USA (Columbia University Irving Medical Center data warehouse [CUIMC] and Department of Veterans Affairs Observational Medical Outcomes Partnership [VA-OMOP]) to identify patients aged 18 years or older with at least one prescription for ACEIs and ARBs (target cohort) or calcium channel blockers (CCBs) and thiazide or thiazide-like diuretics (THZs; comparator cohort) between Nov 1, 2019, and Jan 31, 2020. Users were defined separately as receiving either monotherapy with these four drug classes, or monotherapy or combination therapy (combination use) with other antihypertensive medications. We assessed four outcomes: COVID-19 diagnosis; hospital admission with COVID-19; hospital admission with pneumonia; and hospital admission with pneumonia, acute respiratory distress syndrome, acute kidney injury, or sepsis. We built large-scale propensity score methods derived through a data-driven approach and negative control experiments across ten pairwise comparisons, with results meta-analysed to generate 1280 study effects. For each study effect, we did negative control outcome experiments using a possible 123 controls identified through a data-rich algorithm. This process used a set of predefined baseline patient characteristics to provide the most accurate prediction of treatment and balance among patient cohorts across characteristics. The study is registered with the EU Post-Authorisation Studies register, EUPAS35296. FINDINGS: Among 1 355 349 antihypertensive users (363 785 ACEI or ARB monotherapy users, 248 915 CCB or THZ monotherapy users, 711 799 ACEI or ARB combination users, and 473 076 CCB or THZ combination users) included in analyses, no association was observed between COVID-19 diagnosis and exposure to ACEI or ARB monotherapy versus CCB or THZ monotherapy (calibrated hazard ratio [HR] 0·98, 95% CI 0·84-1·14) or combination use exposure (1·01, 0·90-1·15). ACEIs alone similarly showed no relative risk difference when compared with CCB or THZ monotherapy (HR 0·91, 95% CI 0·68-1·21; with heterogeneity of >40%) or combination use (0·95, 0·83-1·07). Directly comparing ACEIs with ARBs demonstrated a moderately lower risk with ACEIs, which was significant with combination use (HR 0·88, 95% CI 0·79-0·99) and non-significant for monotherapy (0·85, 0·69-1·05). We observed no significant difference between drug classes for risk of hospital admission with COVID-19, hospital admission with pneumonia, or hospital admission with pneumonia, acute respiratory distress syndrome, acute kidney injury, or sepsis across all comparisons. INTERPRETATION: No clinically significant increased risk of COVID-19 diagnosis or hospital admission-related outcomes associated with ACEI or ARB use was observed, suggesting users should not discontinue or change their treatment to decrease their risk of COVID-19. FUNDING: Wellcome Trust, UK National Institute for Health Research, US National Institutes of Health, US Department of Veterans Affairs, Janssen Research & Development, IQVIA, South Korean Ministry of Health and Welfare Republic, Australian National Health and Medical Research Council, and European Health Data and Evidence Network.

5.
medRxiv ; 2020 Oct 30.
Article in English | MEDLINE | ID: covidwho-915986

ABSTRACT

Objectives To characterize the demographics, comorbidities, symptoms, in-hospital treatments, and health outcomes among children/adolescents diagnosed or hospitalized with COVID-19. Secondly, to describe health outcomes amongst children/adolescents diagnosed with previous seasonal influenza. Design International network cohort. Setting Real-world data from European primary care records (France/Germany/Spain), South Korean claims and US claims and hospital databases. Participants Diagnosed and/or hospitalized children/adolescents with COVID-19 at age <18 between January and June 2020; diagnosed with influenza in 2017-2018. Main outcome measures Baseline demographics and comorbidities, symptoms, 30-day in-hospital treatments and outcomes including hospitalization, pneumonia, acute respiratory distress syndrome (ARDS), multi-system inflammatory syndrome (MIS-C), and death. Results A total of 55,270 children/adolescents diagnosed and 3,693 hospitalized with COVID-19 and 1,952,693 diagnosed with influenza were studied. Comorbidities including neurodevelopmental disorders, heart disease, and cancer were all more common among those hospitalized vs diagnosed with COVID-19. The most common COVID-19 symptom was fever. Dyspnea, bronchiolitis, anosmia and gastrointestinal symptoms were more common in COVID-19 than influenza. In-hospital treatments for COVID-19 included repurposed medications (<10%), and adjunctive therapies: systemic corticosteroids (6.8% to 37.6%), famotidine (9.0% to 28.1%), and antithrombotics such as aspirin (2.0% to 21.4%), heparin (2.2% to 18.1%), and enoxaparin (2.8% to 14.8%). Hospitalization was observed in 0.3% to 1.3% of the COVID-19 diagnosed cohort, with undetectable (N<5 per database) 30-day fatality. Thirty-day outcomes including pneumonia, ARDS, and MIS-C were more frequent in COVID-19 than influenza. Conclusions Despite negligible fatality, complications including pneumonia, ARDS and MIS-C were more frequent in children/adolescents with COVID-19 than with influenza. Dyspnea, anosmia and gastrointestinal symptoms could help differential diagnosis. A wide range of medications were used for the inpatient management of pediatric COVID-19.

6.
J Am Med Inform Assoc ; 28(3): 427-443, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-719257

ABSTRACT

OBJECTIVE: Coronavirus disease 2019 (COVID-19) poses societal challenges that require expeditious data and knowledge sharing. Though organizational clinical data are abundant, these are largely inaccessible to outside researchers. Statistical, machine learning, and causal analyses are most successful with large-scale data beyond what is available in any given organization. Here, we introduce the National COVID Cohort Collaborative (N3C), an open science community focused on analyzing patient-level data from many centers. MATERIALS AND METHODS: The Clinical and Translational Science Award Program and scientific community created N3C to overcome technical, regulatory, policy, and governance barriers to sharing and harmonizing individual-level clinical data. We developed solutions to extract, aggregate, and harmonize data across organizations and data models, and created a secure data enclave to enable efficient, transparent, and reproducible collaborative analytics. RESULTS: Organized in inclusive workstreams, we created legal agreements and governance for organizations and researchers; data extraction scripts to identify and ingest positive, negative, and possible COVID-19 cases; a data quality assurance and harmonization pipeline to create a single harmonized dataset; population of the secure data enclave with data, machine learning, and statistical analytics tools; dissemination mechanisms; and a synthetic data pilot to democratize data access. CONCLUSIONS: The N3C has demonstrated that a multisite collaborative learning health network can overcome barriers to rapidly build a scalable infrastructure incorporating multiorganizational clinical data for COVID-19 analytics. We expect this effort to save lives by enabling rapid collaboration among clinicians, researchers, and data scientists to identify treatments and specialized care and thereby reduce the immediate and long-term impacts of COVID-19.


Subject(s)
COVID-19 , Data Science/organization & administration , Information Dissemination , Intersectoral Collaboration , Computer Security , Data Analysis , Ethics Committees, Research , Government Regulation , Humans , National Institutes of Health (U.S.) , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...