Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Vaccine ; 2022 Jul 12.
Article in English | MEDLINE | ID: covidwho-1926970

ABSTRACT

BACKGROUND: Evidence indicates that mRNA COVID-19 vaccination is associated with risk of myocarditis and possibly pericarditis, especially in young males. It is not clear if risk differs between mRNA-1273 versus BNT162b2. We assessed if risk differs using comprehensive health records on a diverse population. METHODS: Members 18-39 years of age at eight integrated healthcare-delivery systems were monitored using data updated weekly and supplemented with medical record review of myocarditis and pericarditis cases. Incidence of myocarditis and pericarditis events that occurred among vaccine recipients 0 to 7 days after either dose 1 or 2 of a messenger RNA (mRNA) vaccine was compared with that of vaccinated concurrent comparators who, on the same calendar day, had received their most recent dose 22 to 42 days earlier. Rate ratios (RRs) were estimated by conditional Poisson regression, adjusted for age, sex, race and ethnicity, health plan, and calendar day. Head-to-head comparison directly assessed risk following mRNA-1273 versus BNT162b2 during 0-7 days post-vaccination. RESULTS: From December 14, 2020 - January 15, 2022 there were 41 cases after 2,891,498 doses of BNT162b2 and 38 cases after 1,803,267 doses of mRNA-1273. Cases had similar demographic and clinical characteristics. Most were hospitalized for ≤1 day; none required intensive care. During days 0-7 after dose 2 of BNT162b2, the incidence was 14.3 (CI: 6.5-34.9) times higher than the comparison interval, amounting to 22.4 excess cases per million doses; after mRNA-1273 the incidence was 18.8 (CI: 6.7-64.9) times higher than the comparison interval, amounting to 31.2 excess cases per million doses. In head-to-head comparisons 0-7 days after either dose, risk was moderately higher after mRNA-1273 than after BNT162b2 (RR: 1.61, CI 1.02-2.54). CONCLUSIONS: Both vaccines were associated with increased risk of myocarditis and pericarditis in 18-39-year-olds. Risk estimates were modestly higher after mRNA-1273 than after BNT162b2.

3.
Pediatrics ; 150(2)2022 Aug 01.
Article in English | MEDLINE | ID: covidwho-1855067

ABSTRACT

BACKGROUND AND OBJECTIVES: Limited postauthorization safety data for the Pfizer-BioNTech coronavirus disease 2019 vaccination among children ages 5 to 11 years are available, particularly for the adverse event myocarditis, which has been detected in adolescents and young adults. We describe adverse events observed during the first 4 months of the United States coronavirus disease 2019 vaccination program in this age group. METHODS: We analyzed data from 3 United States safety monitoring systems: v-safe, a voluntary smartphone-based system that monitors reactions and health effects; the Vaccine Adverse Events Reporting System (VAERS), the national spontaneous reporting system comanaged by the Centers for Disease Control and Prevention and Food and Drug Administration; and the Vaccine Safety Datalink, an active surveillance system that monitors electronic health records for prespecified events, including myocarditis. RESULTS: Among 48 795 children ages 5 to 11 years enrolled in v-safe, most reported reactions were mild-to-moderate, most frequently reported the day after vaccination, and were more common after dose 2. VAERS received 7578 adverse event reports; 97% were nonserious. On review of 194 serious VAERS reports, 15 myocarditis cases were verified; 8 occurred in boys after dose 2 (reporting rate 2.2 per million doses). In the Vaccine Safety Datalink, no safety signals were detected in weekly sequential monitoring after administration of 726 820 doses. CONCLUSIONS: Safety findings for Pfizer-BioNTech vaccine from 3 United States monitoring systems in children ages 5 to 11 years show that most reported adverse events were mild and no safety signals were observed in active surveillance. VAERS reporting rates of myocarditis after dose 2 in this age group were substantially lower than those observed among adolescents ages 12 to 15 years.


Subject(s)
COVID-19 Vaccines , COVID-19 , Myocarditis , Adolescent , Adverse Drug Reaction Reporting Systems , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Child , Child, Preschool , Humans , Male , Myocarditis/etiology , United States/epidemiology , Young Adult
4.
JAMA Netw Open ; 5(4): e228879, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1801993

ABSTRACT

Importance: Postauthorization monitoring of vaccines in a large population may detect rare adverse events not identified in clinical trials such as Guillain-Barré syndrome (GBS), which has a background rate of 1 to 2 per 100 000 person-years. Objective: To describe cases and incidence of GBS following COVID-19 vaccination and assess the risk of GBS after vaccination for Ad.26.COV2.S (Janssen) and mRNA vaccines. Design, Setting, and Participants: This cohort study used surveillance data from the Vaccine Safety Datalink at 8 participating integrated health care systems in the United States. There were 10 158 003 participants aged at least 12 years. Data analysis was performed from November 2021 to February 2022. Exposures: Ad.26.COV2.S, BNT162b2 (Pfizer-BioNTech), or mRNA-1273 (Moderna) COVID-19 vaccine, including mRNA vaccine doses 1 and 2, December 13, 2020, to November 13, 2021. Main Outcomes and Measures: GBS with symptom onset in the 1 to 84 days after vaccination, confirmed by medical record review and adjudication. Descriptive characteristics of confirmed cases, GBS incidence rates during postvaccination risk intervals after each type of vaccine compared with the background rate, rate ratios (RRs) comparing GBS incidence in the 1 to 21 vs 22 to 42 days postvaccination, and RRs directly comparing risk of GBS after Ad.26.COV2.S vs mRNA vaccination, using Poisson regression adjusted for age, sex, race and ethnicity, site, and calendar day. Results: From December 13, 2020, through November 13, 2021, 15 120 073 doses of COVID-19 vaccines were administered to 7 894 989 individuals (mean [SE] age, 46.5 [0.02] years; 8 138 318 doses received [53.8%] by female individuals; 3 671 199 doses received [24.3%] by Hispanic or Latino individuals, 2 215 064 doses received [14.7%] by Asian individuals, 6 266 424 doses received [41.4%] by White individuals), including 483 053 Ad.26.COV2.S doses, 8 806 595 BNT162b2 doses, and 5 830 425 mRNA-1273 doses. Eleven cases of GBS after Ad.26.COV2.S were confirmed. The unadjusted incidence rate of GBS per 100 000 person-years in the 1 to 21 days after Ad.26.COV2.S was 32.4 (95% CI, 14.8-61.5), significantly higher than the background rate, and the adjusted RR in the 1 to 21 vs 22 to 42 days following Ad.26.COV2.S was 6.03 (95% CI, 0.79-147.79). Thirty-six cases of GBS after mRNA vaccines were confirmed. The unadjusted incidence rate per 100 000 person-years in the 1 to 21 days after mRNA vaccines was 1.3 (95% CI, 0.7-2.4) and the adjusted RR in the 1 to 21 vs 22 to 42 days following mRNA vaccines was 0.56 (95% CI, 0.21-1.48). In a head-to-head comparison of Ad.26.COV2.S vs mRNA vaccines, the adjusted RR was 20.56 (95% CI, 6.94-64.66). Conclusions and Relevance: In this cohort study of COVID-19 vaccines, the incidence of GBS was elevated after receiving the Ad.26.COV2.S vaccine. Surveillance is ongoing.


Subject(s)
COVID-19 , Guillain-Barre Syndrome , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Cohort Studies , Female , Guillain-Barre Syndrome/epidemiology , Guillain-Barre Syndrome/etiology , Humans , Incidence , Middle Aged , United States/epidemiology , Vaccination/adverse effects , Vaccines, Synthetic
5.
MMWR Morb Mortal Wkly Rep ; 71(1): 26-30, 2022 Jan 07.
Article in English | MEDLINE | ID: covidwho-1606176

ABSTRACT

COVID-19 vaccines are recommended during pregnancy to prevent severe maternal morbidity and adverse birth outcomes; however, vaccination coverage among pregnant women has been low (1). Concerns among pregnant women regarding vaccine safety are a persistent barrier to vaccine acceptance during pregnancy. Previous studies of maternal COVID-19 vaccination and birth outcomes have been limited by small sample size (2) or lack of an unvaccinated comparison group (3). In this retrospective cohort study of live births from eight Vaccine Safety Datalink (VSD) health care organizations, risks for preterm birth (<37 weeks' gestation) and small-for-gestational-age (SGA) at birth (birthweight <10th percentile for gestational age) after COVID-19 vaccination (receipt of ≥1 COVID-19 vaccine doses) during pregnancy were evaluated. Risks for preterm and SGA at birth among vaccinated and unvaccinated pregnant women were compared, accounting for time-dependent vaccine exposures and propensity to be vaccinated. Single-gestation pregnancies with estimated start or last menstrual period during May 17-October 24, 2020, were eligible for inclusion. Among 46,079 pregnant women with live births and gestational age available, 10,064 (21.8%) received ≥1 COVID-19 vaccine doses during pregnancy and during December 15, 2020-July 22, 2021; nearly all (9,892; 98.3%) were vaccinated during the second or third trimester. COVID-19 vaccination during pregnancy was not associated with preterm birth (adjusted hazard ratio [aHR] = 0.91; 95% CI = 0.82-1.01). Among 40,627 live births with birthweight available, COVID-19 vaccination in pregnancy was not associated with SGA at birth (aHR = 0.95; 95% CI = 0.87-1.03). Results consistently showed no increased risk when stratified by mRNA COVID-19 vaccine dose, or by second or third trimester vaccination, compared with risk among unvaccinated pregnant women. Because of the small number of first-trimester exposures, aHRs for first-trimester vaccination could not be calculated. These data add to the evidence supporting the safety of COVID-19 vaccination during pregnancy. To reduce the risk for severe COVID-19-associated illness, CDC recommends COVID-19 vaccination for women who are pregnant, recently pregnant (including those who are lactating), who are trying to become pregnant now, or who might become pregnant in the future (4).


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Infant, Premature , Infant, Small for Gestational Age , Premature Birth/epidemiology , Adolescent , Adult , Cohort Studies , Female , Humans , Middle Aged , Patient Safety , Pregnancy , Prevalence , Retrospective Studies , Risk Assessment , SARS-CoV-2/immunology , United States/epidemiology , Young Adult
6.
Vaccine ; 40(5): 752-756, 2022 01 31.
Article in English | MEDLINE | ID: covidwho-1586268

ABSTRACT

BACKGROUND: The Vaccine Safety Datalink (VSD) uses vaccination data from electronic health records (EHR) at eight integrated health systems to monitor vaccine safety. Accurate capture of data from vaccines administered outside of the health system is critical for vaccine safety research, especially for COVID-19 vaccines, where many are administered in non-traditional settings. However, timely access and inclusion of data from Immunization Information Systems (IIS) into VSD safety assessments is not well understood. METHODS: We surveyed the eight data-contributing VSD sites to assess: 1) status of sending data to IIS; 2) status of receiving data from IIS; and 3) integration of IIS data into the site EHR. Sites reported separately for COVID-19 vaccination to capture any differences in capacity to receive and integrate data on COVID-19 vaccines versus other vaccines. RESULTS: All VSD sites send data to and receive data from their state IIS. All eight sites (100%) routinely integrate IIS data for COVID-19 vaccines into VSD research studies. Six sites (75%) also routinely integrate all other vaccination data; two sites integrate data from IIS following a reconciliation process, which can result in delays to integration into VSD datasets. CONCLUSIONS: COVID-19 vaccines are being administered in a variety of non-traditional settings, where IIS are commonly used as centralized reporting systems. All eight VSD sites receive and integrate COVID-19 vaccine data from IIS, which positions the VSD well for conducting quality assessments of vaccine safety. Efforts to improve the timely receipt of all vaccination data will improve capacity to conduct vaccine safety assessments within the VSD.


Subject(s)
COVID-19 , Vaccines , COVID-19 Vaccines , Humans , Immunization , Information Systems , SARS-CoV-2 , United States , Vaccination/adverse effects , Vaccines/adverse effects
7.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-294893

ABSTRACT

Importance: Post-authorization monitoring of vaccines in a large population can detect rare adverse events not identified in clinical trials including Guillain-Barré syndrome (GBS). GBS has a background rate of 1-2 per 100,000 person-years. Objective: To 1) describe cases and incidence of GBS following COVID-19 vaccination, and 2) assess the risk of GBS after vaccination for Ad.26.COV2.S (Janssen) and mRNA vaccines. Design: Interim analysis of surveillance data from the Vaccine Safety Datalink. Setting: Eight participating integrated healthcare systems in the United States. Participants: 10,158,003 individuals aged ≥12 years. Exposures: Receipt of Ad.26.COV2.S, BNT162b2 (Pfizer-BioNTech), or mRNA-1273 (Moderna) COVID-19 vaccine. Main Outcomes and Measures: GBS with symptom onset in the 1-84 days after vaccination as confirmed by medical record review and adjudication. Descriptive characteristics of confirmed cases, GBS incidence rates during postvaccination risk intervals after each type of vaccine compared to the background rate, rate ratios (RRs) comparing GBS incidence in the 1-21 vs. 22-42 days postvaccination, and RRs directly comparing risk of GBS after Ad.26.COV2.S vs. mRNA vaccination, using Poisson regression adjusted for age, sex, race/ethnicity, site, and calendar day. Results: From December 13, 2020 through November 13, 2021, 14,723,318 doses of COVID-19 vaccines were administered, including 467,126 Ad.26.COV2.S, 8,573,823 BNT162b2, and 5,682,369 mRNA-1273 doses. Eleven cases of GBS after Ad.26.COV2.S were confirmed. The unadjusted incidence rate of confirmed cases of GBS per 100,000 person-years in the 1-21 days after Ad.26.COV2.S was 34.6 (95% confidence interval [CI]: 15.8-65.7), significantly higher than the background rate, and the adjusted RR in the 1-21 vs. 22-42 days following Ad.26.COV2.S was 6.03 (95% CI: 0.79-147.79). Thirty-four cases of GBS after mRNA vaccines were confirmed. The unadjusted incidence rate of confirmed cases per 100,000 person-years in the 1-21 days after mRNA vaccines was 1.4 (95% CI: 0.7-2.5) and the adjusted RR in the 1-21 vs. 22-42 days following mRNA vaccines was 0.56 (95% CI: 0.21-1.48). In a head-to-head comparison of Ad.26.COV2.S vs. mRNA vaccines, the adjusted RR was 20.56 (95% CI: 6.94-64.66). Conclusions and Relevance: In this interim analysis of surveillance data of COVID-19 vaccines, the incidence of GBS was elevated after Ad.26.COV2.S. Surveillance is ongoing.

8.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-293534

ABSTRACT

Importance: Post-authorization monitoring of vaccines in a large population can detect rare adverse events not identified in clinical trials including Guillain-Barré syndrome (GBS). GBS has a background rate of 1-2 per 100,000 person-years. Objective: To 1) describe cases and incidence of GBS following COVID-19 vaccination, and 2) assess the risk of GBS after vaccination for Ad.26.COV2.S (Janssen) and mRNA vaccines. Design: Interim analysis of surveillance data from the Vaccine Safety Datalink. Setting: Eight participating integrated healthcare systems in the United States. Participants: 10,158,003 individuals aged ≥12 years. Exposures: Receipt of Ad.26.COV2.S, BNT162b2 (Pfizer-BioNTech), or mRNA-1273 (Moderna) COVID-19 vaccine. Main Outcomes and Measures: GBS with symptom onset in the 1-84 days after vaccination as confirmed by medical record review and adjudication. Descriptive characteristics of confirmed cases, GBS incidence rates during postvaccination risk intervals after each type of vaccine compared to the background rate, rate ratios (RRs) comparing GBS incidence in the 1-21 vs. 22-42 days postvaccination, and RRs directly comparing risk of GBS after Ad.26.COV2.S vs. mRNA vaccination, using Poisson regression adjusted for age, sex, race/ethnicity, site, and calendar day. Results: From December 13, 2020 through November 13, 2021, 14,723,318 doses of COVID-19 vaccines were administered, including 467,126 Ad.26.COV2.S, 8,573,823 BNT162b2, and 5,682,369 mRNA-1273 doses. Eleven cases of GBS after Ad.26.COV2.S were confirmed. The unadjusted incidence rate of confirmed cases of GBS per 100,000 person-years in the 1-21 days after Ad.26.COV2.S was 34.6 (95% confidence interval [CI]: 15.8-65.7), significantly higher than the background rate, and the adjusted RR in the 1-21 vs. 22-42 days following Ad.26.COV2.S was 6.03 (95% CI: 0.79-147.79). Thirty-four cases of GBS after mRNA vaccines were confirmed. The unadjusted incidence rate of confirmed cases per 100,000 person-years in the 1-21 days after mRNA vaccines was 1.4 (95% CI: 0.7-2.5) and the adjusted RR in the 1-21 vs. 22-42 days following mRNA vaccines was 0.56 (95% CI: 0.21-1.48). In a head-to-head comparison of Ad.26.COV2.S vs. mRNA vaccines, the adjusted RR was 20.56 (95% CI: 6.94-64.66). Conclusions and Relevance: In this interim analysis of surveillance data of COVID-19 vaccines, the incidence of GBS was elevated after Ad.26.COV2.S. Surveillance is ongoing.

9.
Vaccine X ; 9: 100121, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1487187

ABSTRACT

INTRODUCTION: Religious vaccine exemptions are widely available and increasing despite decreases in American religiosity. We tested associations between religion, religiosity, and caregiver vaccine hesitancy in a sample of caregivers of 2-year-olds. METHODS: We analyzed data from a 2020 survey in three pediatric clinics, estimating distinct multivariable logistic regression models to examine associations. RESULTS: Our sample included 255 predominantly poor, Latino, Christian, and English-speaking caregivers (response rate: 90%); 13% were vaccine hesitant. Caregivers identifying with major faith traditions were not more likely to be hesitant than those without a tradition (adjusted odds ratio 1.46; 95% CI 0.29, 7.26). There were no significant associations between caregiver vaccine hesitancy and three religiosity domains. CONCLUSIONS: We found no associations between parental vaccine hesitancy, religiosity, or adherence to a major faith tradition in a sample of mostly poor, Latino, Christian mothers. Additional work is needed to inform exemption policies and public health and faith leaders.

10.
JAMA ; 326(14): 1390-1399, 2021 10 12.
Article in English | MEDLINE | ID: covidwho-1490611

ABSTRACT

Importance: Safety surveillance of vaccines against COVID-19 is critical to ensure safety, maintain trust, and inform policy. Objectives: To monitor 23 serious outcomes weekly, using comprehensive health records on a diverse population. Design, Setting, and Participants: This study represents an interim analysis of safety surveillance data from Vaccine Safety Datalink. The 10 162 227 vaccine-eligible members of 8 participating US health plans were monitored with administrative data updated weekly and supplemented with medical record review for selected outcomes from December 14, 2020, through June 26, 2021. Exposures: Receipt of BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) COVID-19 vaccination, with a risk interval of 21 days for individuals after vaccine dose 1 or 2 compared with an interval of 22 to 42 days for similar individuals after vaccine dose 1 or 2. Main Outcomes and Measures: Incidence of serious outcomes, including acute myocardial infarction, Bell palsy, cerebral venous sinus thrombosis, Guillain-Barré syndrome, myocarditis/pericarditis, pulmonary embolism, stroke, and thrombosis with thrombocytopenia syndrome. Incidence of events that occurred among vaccine recipients 1 to 21 days after either dose 1 or 2 of a messenger RNA (mRNA) vaccine was compared with that of vaccinated concurrent comparators who, on the same calendar day, had received their most recent dose 22 to 42 days earlier. Rate ratios (RRs) were estimated by Poisson regression, adjusted for age, sex, race and ethnicity, health plan, and calendar day. For a signal, a 1-sided P < .0048 was required to keep type I error below .05 during 2 years of weekly analyses. For 4 additional outcomes, including anaphylaxis, only descriptive analyses were conducted. Results: A total of 11 845 128 doses of mRNA vaccines (57% BNT162b2; 6 175 813 first doses and 5 669 315 second doses) were administered to 6.2 million individuals (mean age, 49 years; 54% female individuals). The incidence of events per 1 000 000 person-years during the risk vs comparison intervals for ischemic stroke was 1612 vs 1781 (RR, 0.97; 95% CI, 0.87-1.08); for appendicitis, 1179 vs 1345 (RR, 0.82; 95% CI, 0.73-0.93); and for acute myocardial infarction, 935 vs 1030 (RR, 1.02; 95% CI, 0.89-1.18). No vaccine-outcome association met the prespecified requirement for a signal. Incidence of confirmed anaphylaxis was 4.8 (95% CI, 3.2-6.9) per million doses of BNT162b2 and 5.1 (95% CI, 3.3-7.6) per million doses of mRNA-1273. Conclusions and Relevance: In interim analyses of surveillance of mRNA COVID-19 vaccines, incidence of selected serious outcomes was not significantly higher 1 to 21 days postvaccination compared with 22 to 42 days postvaccination. While CIs were wide for many outcomes, surveillance is ongoing.


Subject(s)
COVID-19 Vaccines/adverse effects , Adolescent , Adult , Aged , Anaphylaxis/epidemiology , Anaphylaxis/etiology , Child , Female , Follow-Up Studies , Humans , Male , Middle Aged , Myocarditis/epidemiology , Myocarditis/etiology , Public Health Surveillance , Time Factors , Vaccines, Synthetic/adverse effects , Young Adult
11.
JAMA Pediatr ; 176(1): 68-77, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-1453520

ABSTRACT

Importance: The COVID-19 pandemic has affected routine vaccine delivery in the US and globally. The magnitude of these disruptions and their association with childhood vaccination coverage are unclear. Objectives: To compare trends in pediatric vaccination before and during the pandemic and to evaluate the proportion of children up to date (UTD) with vaccinations by age, race, and ethnicity. Design, Setting, and Participants: This surveillance study used a prepandemic-postpandemic control design with data from 8 health systems in California, Oregon, Washington, Colorado, Minnesota, and Wisconsin in the Vaccine Safety Datalink. Children from age groups younger than 24 months and 4 to 6, 11 to 13, and 16 to 18 years were included if they had at least 1 week of health system enrollment from January 5, 2020, through October 3, 2020, over periods before the US COVID-19 pandemic (January 5, 2020, through March 14, 2020), during age-limited preventive care (March 15, 2020, through May 16, 2020), and during expanded primary care (May 17, 2020, through October 3, 2020). These individuals were compared with those enrolled during analogous weeks in 2019. Exposures: This study evaluated UTD status among children reaching specific ages in February, May, and September 2020, compared with those reaching these ages in 2019. Main Outcomes and Measures: Weekly vaccination rates for routine age-specific vaccines and the proportion of children UTD for all age-specific recommended vaccines. Results: Of 1 399 708 children in 2019 and 1 402 227 in 2020, 1 371 718 were female (49.0%) and 1 429 979 were male (51.0%); 334 216 Asian individuals (11.9%), 900 226 were Hispanic individuals (32.1%), and 201 619 non-Hispanic Black individuals (7.2%). Compared with the prepandemic period and 2019, the age-limited preventive care period was associated with lower weekly vaccination rates, with ratios of rate ratios of 0.82 (95% CI, 0.80-0.85) among those younger than 24 months, 0.18 (95% CI, 0.16-0.20) among those aged 4 to 6 years, 0.16 (95% CI, 0.14-0.17) among those aged 11 to 13 years, and 0.10 (95% CI, 0.08-0.13) among those aged 16 to 18 years. Vaccination rates during expanded primary care remained lower for most ages (ratios of rate ratios: <24 months, 0.96 [95% CI, 0.93-0.98]; 11-13 years, 0.81 [95% CI, 0.76-0.86]; 16-18 years, 0.57 [95% CI, 0.51-0.63]). In September 2020, 74% (95% CI, 73%-76%) of infants aged 7 months and 57% (95% CI, 56%-58%) of infants aged 18 months were UTD vs 81% (95% CI, 80%-82%) and 61% (95% CI, 60%-62%), respectively, in September 2019. The proportion UTD was lowest in non-Hispanic Black children across most age groups, both during and prior to the COVID-19 pandemic (eg, in May 2019, 70% [95% CI, 64%-75%] of non-Hispanic Black infants aged 7 months were UTD vs 82% [95% CI, 81%-83%] in all infants aged 7 months combined). Conclusions and Relevance: As of September 2020, childhood vaccination rates and the proportion who were UTD remained lower than 2019 levels. Interventions are needed to promote catch-up vaccination, particularly in populations at risk for underimmunization.


Subject(s)
COVID-19/epidemiology , Vaccination Coverage/statistics & numerical data , Vaccination/statistics & numerical data , Vaccines/administration & dosage , Child , Child Health Services/organization & administration , Female , Humans , Immunization Programs/statistics & numerical data , Male , Time Factors
12.
JAMA ; 326(14): 1390-1399, 2021 10 12.
Article in English | MEDLINE | ID: covidwho-1391514

ABSTRACT

Importance: Safety surveillance of vaccines against COVID-19 is critical to ensure safety, maintain trust, and inform policy. Objectives: To monitor 23 serious outcomes weekly, using comprehensive health records on a diverse population. Design, Setting, and Participants: This study represents an interim analysis of safety surveillance data from Vaccine Safety Datalink. The 10 162 227 vaccine-eligible members of 8 participating US health plans were monitored with administrative data updated weekly and supplemented with medical record review for selected outcomes from December 14, 2020, through June 26, 2021. Exposures: Receipt of BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) COVID-19 vaccination, with a risk interval of 21 days for individuals after vaccine dose 1 or 2 compared with an interval of 22 to 42 days for similar individuals after vaccine dose 1 or 2. Main Outcomes and Measures: Incidence of serious outcomes, including acute myocardial infarction, Bell palsy, cerebral venous sinus thrombosis, Guillain-Barré syndrome, myocarditis/pericarditis, pulmonary embolism, stroke, and thrombosis with thrombocytopenia syndrome. Incidence of events that occurred among vaccine recipients 1 to 21 days after either dose 1 or 2 of a messenger RNA (mRNA) vaccine was compared with that of vaccinated concurrent comparators who, on the same calendar day, had received their most recent dose 22 to 42 days earlier. Rate ratios (RRs) were estimated by Poisson regression, adjusted for age, sex, race and ethnicity, health plan, and calendar day. For a signal, a 1-sided P < .0048 was required to keep type I error below .05 during 2 years of weekly analyses. For 4 additional outcomes, including anaphylaxis, only descriptive analyses were conducted. Results: A total of 11 845 128 doses of mRNA vaccines (57% BNT162b2; 6 175 813 first doses and 5 669 315 second doses) were administered to 6.2 million individuals (mean age, 49 years; 54% female individuals). The incidence of events per 1 000 000 person-years during the risk vs comparison intervals for ischemic stroke was 1612 vs 1781 (RR, 0.97; 95% CI, 0.87-1.08); for appendicitis, 1179 vs 1345 (RR, 0.82; 95% CI, 0.73-0.93); and for acute myocardial infarction, 935 vs 1030 (RR, 1.02; 95% CI, 0.89-1.18). No vaccine-outcome association met the prespecified requirement for a signal. Incidence of confirmed anaphylaxis was 4.8 (95% CI, 3.2-6.9) per million doses of BNT162b2 and 5.1 (95% CI, 3.3-7.6) per million doses of mRNA-1273. Conclusions and Relevance: In interim analyses of surveillance of mRNA COVID-19 vaccines, incidence of selected serious outcomes was not significantly higher 1 to 21 days postvaccination compared with 22 to 42 days postvaccination. While CIs were wide for many outcomes, surveillance is ongoing.


Subject(s)
COVID-19 Vaccines/adverse effects , Adolescent , Adult , Aged , Anaphylaxis/epidemiology , Anaphylaxis/etiology , Child , Female , Follow-Up Studies , Humans , Male , Middle Aged , Myocarditis/epidemiology , Myocarditis/etiology , Public Health Surveillance , Time Factors , Vaccines, Synthetic/adverse effects , Young Adult
13.
MMWR Morb Mortal Wkly Rep ; 69(38): 1355-1359, 2020 Sep 23.
Article in English | MEDLINE | ID: covidwho-1389855

ABSTRACT

Pregnant women might be at increased risk for severe coronavirus disease 2019 (COVID-19), possibly related to changes in their immune system and respiratory physiology* (1). Further, adverse birth outcomes, such as preterm delivery and stillbirth, might be more common among pregnant women infected with SARS-CoV-2, the virus that causes COVID-19 (2,3). Information about SARS-CoV-2 infection during pregnancy is rapidly growing; however, data on reasons for hospital admission, pregnancy-specific characteristics, and birth outcomes among pregnant women hospitalized with SARS-CoV-2 infections are limited. During March 1-May 30, 2020, as part of Vaccine Safety Datalink (VSD)† surveillance of COVID-19 hospitalizations, 105 hospitalized pregnant women with SARS-CoV-2 infection were identified, including 62 (59%) hospitalized for obstetric reasons (i.e., labor and delivery or another pregnancy-related indication) and 43 (41%) hospitalized for COVID-19 illness without an obstetric reason. Overall, 50 (81%) of 62 pregnant women with SARS-CoV-2 infection who were admitted for obstetric reasons were asymptomatic. Among 43 pregnant women hospitalized for COVID-19, 13 (30%) required intensive care unit (ICU) admission, six (14%) required mechanical ventilation, and one died from COVID-19. Prepregnancy obesity was more common (44%) among pregnant women hospitalized for COVID-19 than that among asymptomatic pregnant women hospitalized for obstetric reasons (31%). Likewise, the rate of gestational diabetes (26%) among pregnant women hospitalized for COVID-19 was higher than it was among women hospitalized for obstetric reasons (8%). Preterm delivery occurred in 15% of pregnancies among 93 women who delivered, and stillbirths (fetal death at ≥20 weeks' gestation) occurred in 3%. Antenatal counseling emphasizing preventive measures (e.g., use of masks, frequent hand washing, and social distancing) might help prevent COVID-19 among pregnant women,§ especially those with prepregnancy obesity and gestational diabetes, which might reduce adverse pregnancy outcomes.


Subject(s)
Coronavirus Infections/diagnosis , Coronavirus Infections/therapy , Hospitalization/statistics & numerical data , Pneumonia, Viral/diagnosis , Pneumonia, Viral/therapy , Pregnancy Complications, Infectious/therapy , Pregnancy Complications, Infectious/virology , Adolescent , Adult , COVID-19 , Coronavirus Infections/epidemiology , Female , Health Facilities/statistics & numerical data , Humans , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , Pregnancy , Pregnancy Complications, Infectious/epidemiology , Risk Assessment , Risk Factors , United States/epidemiology , Young Adult
14.
J Relig Health ; 60(3): 1436-1445, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1152065

ABSTRACT

Faith communities are uniquely positioned for essential public health work to combat the COVID-19 pandemic and address the chronic pre-existing health disparities that have been exacerbated by COVID-19. Specifically, faith communities can (1) dialogue with public health communities, developing internal policies and meeting guidelines consistent with evidence-based recommendations and their own faith traditions, (2) bolster religious daycare and parochial school immunization policies, and (3) partner with faith-based organizations through financial support and volunteer hours. This essential work will complement governmental public health approaches and ensure faith communities can assist with future pandemics.


Subject(s)
COVID-19 , Faith-Based Organizations , Humans , Pandemics , Public Health , SARS-CoV-2
15.
Vaccine ; 38(45): 6971-6974, 2020 10 21.
Article in English | MEDLINE | ID: covidwho-921637
SELECTION OF CITATIONS
SEARCH DETAIL