Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Archives of Disease in Childhood ; 2022.
Article in English | ProQuest Central | ID: covidwho-2019806

ABSTRACT

Non-pharmaceutical interventions (NPIs) introduced globally to limit the spread of SARS-CoV-2 led to disruption of the typical respiratory syncytial virus (RSV) seasonality.1 Studies examining the resurgence of RSV have been limited by sample size and lack of information on secondary care episodes and clinical features. The BronchStart study is a prospective multicentre cohort study. Paediatric emergency departments (PED) within PERUKI (Paediatric Emergency Research in the UK and Ireland) submit data on all children under 2 years of age who visit a PED with symptoms of an acute lower respiratory tract infection (diagnosed as bronchiolitis, lower respiratory tract infection or first episode of acute wheeze). Follow-up information is submitted 7 days later and study data are made available on a live online dashboard hosted by Microreact.2

2.
Nat Rev Immunol ; 2022 Jul 13.
Article in English | MEDLINE | ID: covidwho-1931418
3.
Pediatr Res ; 2022 Apr 22.
Article in English | MEDLINE | ID: covidwho-1805591

ABSTRACT

BACKGROUND: We hypothesised that the clinical characteristics of hospitalised children and young people (CYP) with SARS-CoV-2 in the UK second wave (W2) would differ from the first wave (W1) due to the alpha variant (B.1.1.7), school reopening and relaxation of shielding. METHODS: Prospective multicentre observational cohort study of patients <19 years hospitalised in the UK with SARS-CoV-2 between 17/01/20 and 31/01/21. Clinical characteristics were compared between W1 and W2 (W1 = 17/01/20-31/07/20,W2 = 01/08/20-31/01/21). RESULTS: 2044 CYP < 19 years from 187 hospitals. 427/2044 (20.6%) with asymptomatic/incidental SARS-CoV-2 were excluded from main analysis. 16.0% (248/1548) of symptomatic CYP were admitted to critical care and 0.8% (12/1504) died. 5.6% (91/1617) of symptomatic CYP had Multisystem Inflammatory Syndrome in Children (MIS-C). After excluding CYP with MIS-C, patients in W2 had lower Paediatric Early Warning Scores (PEWS, composite vital sign score), lower antibiotic use and less respiratory and cardiovascular support than W1. The proportion of CYP admitted to critical care was unchanged. 58.0% (938/1617) of symptomatic CYP had no reported comorbidity. Patients without co-morbidities were younger (42.4%, 398/938, <1 year), had lower PEWS, shorter length of stay and less respiratory support. CONCLUSIONS: We found no evidence of increased disease severity in W2 vs W1. A large proportion of hospitalised CYP had no comorbidity. IMPACT: No evidence of increased severity of COVID-19 admissions amongst children and young people (CYP) in the second vs first wave in the UK, despite changes in variant, relaxation of shielding and return to face-to-face schooling. CYP with no comorbidities made up a significant proportion of those admitted. However, they had shorter length of stays and lower treatment requirements than CYP with comorbidities once those with MIS-C were excluded. At least 20% of CYP admitted in this cohort had asymptomatic/incidental SARS-CoV-2 infection. This paper was presented to SAGE to inform CYP vaccination policy in the UK.

4.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-331670

ABSTRACT

Objective To determine how the severity of successively dominant SARS-CoV-2 variants has changed over the course of the COVID-19 pandemic. Design Prospective cohort analysis. Setting Community- and hospital- sequenced COVID-19 cases in the NHS Greater Glasgow and Clyde (NHS GG&C) Health Board (1.2 million people). Participants All sequenced non-nosocomial adult COVID-19 cases in NHS GG&C identified to be infected with the relevant SARS-CoV-2 lineage during the following analysis periods. B.1.177/Alpha analysis: 1st November 2020 - 30th January 2021 (n = 1640). Alpha/Delta analysis: 1st April - 30th June 2021 (n = 5552). AY.4.2 Delta/non-AY.4.2 Delta analysis: 1st July – 31st October 2021 (n = 9613). Non-AY.4.2 Delta/Omicron analysis: 1st – 31st December 2021 (n = 3858). Main outcome measures Admission to hospital, admission to ICU, or death within 28 days of first positive COVID-19 test Results In the B.1.177/Alpha analysis, 300 of 807 (37.2%) B.1.177 cases were recorded as hospitalised or having a more severe outcome, compared to 232 of 833 (27.9%) Alpha cases. After adjusting for the following covariates: age, sex, time of positive test, comorbidities and partial postcode, the cumulative odds ratio was 1.51 (95% central credible interval 1.08-2.11) for Alpha versus B.1.177. In the Alpha/Delta analysis, 113 of 2104 (5.4%) Alpha cases were recorded as hospitalised or having a more severe outcome, compared to 230 of 3448 (6.7%) Delta cases. After adjusting for the above covariates plus number of vaccine doses and reinfection, the cumulative odds ratio was 2.09 (95% central credible interval 1.42-3.08) for Delta versus Alpha. In the non-AY.4.2 Delta/AY.4.2 Delta analysis, 845 of 8644 (9.8%) non-AY.4.2 Delta cases were recorded as hospitalised or having a more severe outcome, compared to 101 of 969 (10.4%) AY.4.2 Delta cases. After adjusting for the previously stated covariates, the cumulative odds ratio was 0.99 (95% central credible interval 0.76-1.27) for AY.4.2 Delta versus non-AY.4.2 Delta. In the non-AY.4.2 Delta/Omicron analysis, 30 of 1164 (2.6%) non-AY.4.2 Delta cases were recorded as hospitalised or having a more severe outcome, compared to 26 of 2694 (1.0%) Omicron cases. After adjusting for the previously listed covariates, the median cumulative odds ratio was 0.49 (95% central credible interval 0.22-1.06) for Omicron versus non-AY.4.2 Delta. Conclusions The direction of change in disease severity between successively emerging SARS-CoV-2 variants of concern was inconsistent. This heterogeneity in virulence between variants, coupled with independent evolutionary emergence, demonstrates that severity associated with future SARS-CoV-2 variants is inherently unpredictable.

6.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-328362

ABSTRACT

Background: This study aimed to determine the sensitivity and specificity of reverse transcription PCR (RT-PCR) testing of upper respiratory tract samples from hospitalised patients with coronavirus disease 2019 (COVID-19), compared to the gold standard of a clinical diagnosis. Methods: : </ns3:bold>All RT-PCR testing for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in NHS Lothian, Scotland, United Kingdom between the 7<ns3:sup>th</ns3:sup> of February and 19<ns3:sup>th</ns3:sup> April 2020 (inclusive) was reviewed, and hospitalised patients were identified. All upper respiratory tract<ns3:bold> </ns3:bold>RT-PCR tests were analysed for each patient to determine the sequence of negative and positive results. For those who were tested twice or more but never received a positive result, case records were reviewed, and a clinical diagnosis of COVID-19 allocated based on clinical features, discharge diagnosis, and radiology and haematology results. For those who had a negative RT-PCR test but a clinical diagnosis of COVID-19, respiratory samples were retested using a multiplex respiratory panel, a second SARS-CoV-2 RT-PCR assay, and a human RNase P control. Results: : </ns3:bold>Compared to the gold standard of a clinical diagnosis of COVID-19, the sensitivity of a single upper respiratory tract RT-PCR for COVID-19 was 82.2% (95% confidence interval 79.0-85.1%).   The sensitivity of two upper respiratory tract RT-PCR tests increased sensitivity to 90.6% (CI 88.0-92.7%). A further 2.2% and 0.9% of patients who received a clinical diagnosis of COVID-19 were positive on a third and fourth test;this may be an underestimate of the value of further testing as the majority of patients 93.0% (2999/3226) only had one or two RT-PCR tests. Conclusions: : </ns3:bold>The sensitivity of a single RT-PCR test of upper respiratory tract<ns3:bold> </ns3:bold>samples in hospitalised patients is 82.2%. Sensitivity increases to 90.6% when patients are tested twice.  A proportion of cases with clinically defined COVID-19 never test positive on RT-PCR despite repeat testing.

7.
Wellcome open research ; 5, 2020.
Article in English | EuropePMC | ID: covidwho-1679256

ABSTRACT

Background: This study aimed to determine the sensitivity and specificity of reverse transcription PCR (RT-PCR) testing of upper respiratory tract samples from hospitalised patients with coronavirus disease 2019 (COVID-19), compared to the gold standard of a clinical diagnosis. Methods: All RT-PCR testing for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in NHS Lothian, Scotland, United Kingdom between the 7 th of February and 19 th April 2020 (inclusive) was reviewed, and hospitalised patients were identified. All upper respiratory tract RT-PCR tests were analysed for each patient to determine the sequence of negative and positive results. For those who were tested twice or more but never received a positive result, case records were reviewed, and a clinical diagnosis of COVID-19 allocated based on clinical features, discharge diagnosis, and radiology and haematology results. For those who had a negative RT-PCR test but a clinical diagnosis of COVID-19, respiratory samples were retested using a multiplex respiratory panel, a second SARS-CoV-2 RT-PCR assay, and a human RNase P control. Results: Compared to the gold standard of a clinical diagnosis of COVID-19, the sensitivity of a single upper respiratory tract RT-PCR for COVID-19 was 82.2% (95% confidence interval 79.0-85.1%).   The sensitivity of two upper respiratory tract RT-PCR tests increased sensitivity to 90.6% (CI 88.0-92.7%). A further 2.2% and 0.9% of patients who received a clinical diagnosis of COVID-19 were positive on a third and fourth test;this may be an underestimate of the value of further testing as the majority of patients 93.0% (2999/3226) only had one or two RT-PCR tests. Conclusions: The sensitivity of a single RT-PCR test of upper respiratory tract samples in hospitalised patients is 82.2%. Sensitivity increases to 90.6% when patients are tested twice.  A proportion of cases with clinically defined COVID-19 never test positive on RT-PCR despite repeat testing.

8.
Sci Rep ; 11(1): 24336, 2021 12 21.
Article in English | MEDLINE | ID: covidwho-1585788

ABSTRACT

ACE2 is a membrane protein that regulates the cardiovascular system. Additionally, ACE2 acts as a receptor for host cell infection by human coronaviruses, including SARS-CoV-2 that emerged as the cause of the on-going COVID-19 pandemic and has brought unprecedented burden to economy and health. ACE2 binds the spike protein of SARS-CoV-2 with high affinity and shows little variation in amino acid sequence meaning natural resistance is rare. The discovery of a novel short ACE2 isoform (deltaACE2) provides evidence for inter-individual differences in SARS-CoV-2 susceptibility and severity, and likelihood of developing subsequent 'Long COVID'. Critically, deltaACE2 loses SARS-CoV-2 spike protein binding sites in the extracellular domain, and is predicted to confer reduced susceptibility to viral infection. We aimed to assess the differential expression of full-length ACE2 versus deltaACE2 in a panel of human tissues (kidney, heart, lung, and liver) that are implicated in COVID-19, and confirm ACE2 protein in these tissues. Using dual antibody staining, we show that deltaACE2 localises, and is enriched, in lung airway epithelia and bile duct epithelia in the liver. Finally, we also confirm that a fluorescently tagged SARS-CoV-2 spike protein monomer shows low binding at lung and bile duct epithelia where dACE2 is enriched.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Bile Ducts/metabolism , Bile Ducts/virology , Binding Sites , COVID-19/pathology , COVID-19/virology , Humans , Lung/metabolism , Lung/virology , Microscopy, Fluorescence, Multiphoton , Protein Binding , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptors, Virus/chemistry , Receptors, Virus/metabolism , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Virus Internalization
9.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-296319

ABSTRACT

ACE2 is a membrane protein that regulates the cardiovascular system. Additionally, ACE2 acts as a receptor for host cell infection by human coronaviruses, including SARS-CoV-2 that emerged as the cause of the on-going COVID-19 pandemic and has brought unprecedented burden to economy and health. ACE2 binds the spike protein of SARS-CoV-2 with high affinity and shows little variation in amino acid sequence meaning natural resistance is rare. The discovery of a novel short ACE2 isoform ( delta ACE2) provides evidence for inter-individual differences in SARS-CoV-2 susceptibility and severity, and likelihood of developing subsequent ‘Long COVID’. Critically, delta ACE2 loses SARS-CoV-2 spike protein binding sites in the extracellular domain, and is predicted to confer reduced susceptibility to viral infection. We aimed to assess the differential expression of full-length ACE2 versus delta ACE2 in a panel of human tissues (kidney, heart, lung, and liver) that are implicated in COVID-19, and confirm ACE2 protein in these tissues. Using dual antibody staining, we show that delta ACE2 localises, and is enriched, in lung airway epithelia and bile duct epithelia in the liver. Finally, we also confirm that a fluorescently tagged SARS-CoV-2 spike protein monomer shows low binding at lung and bile duct epithelia where dACE2 is enriched.

10.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-295699

ABSTRACT

Background The B.1.1.7 (Alpha) SARS-CoV-2 variant of concern was associated with increased transmission relative to other variants present at the time of its emergence and several studies have shown an association between the B.1.1.7 lineage infection and increased 28-day mortality. However, to date none have addressed the impact of infection on severity of illness or the need for oxygen or ventilation. Methods In this prospective clinical cohort sub-study of the COG-UK consortium, 1475 samples from hospitalised and community cases collected between the 1 st November 2020 and 30 th January 2021 were collected. These samples were sequenced in local laboratories and analysed for the presence of B.1.1.7-defining mutations. We prospectively matched sequence data to clinical outcomes as the lineage became dominant in Scotland and modelled the association between B.1.1.7 infection and severe disease using a 4-point scale of maximum severity by 28 days: 1. no support, 2. oxygen, 3. ventilation and 4. death. Additionally, we calculated an estimate of the growth rate of B.1.1.7-associated infections following introduction into Scotland using phylogenetic data. Results B.1.1.7 was responsible for a third wave of SARS-CoV-2 in Scotland, and rapidly replaced the previously dominant second wave lineage B.1.177) due to a significantly higher transmission rate (∼5 fold). Of 1475 patients, 364 were infected with B.1.1.7, 1030 with B.1.177 and 81 with other lineages. Our cumulative generalised linear mixed model analyses found evidence (cumulative odds ratio: 1.40, 95% CI: 1.02, 1.93) of a positive association between increased clinical severity and lineage (B.1.1.7 versus non-B.1.1.7). Viral load was higher in B.1.1.7 samples than in non-B.1.1.7 samples as measured by cycle threshold (Ct) value (mean Ct change: -2.46, 95% CI: -4.22, -0.70). Conclusions The B.1.1.7 lineage was associated with more severe clinical disease in Scottish patients than co-circulating lineages. Funding COG-UK is supported by funding from the Medical Research Council (MRC) part of UK Research & Innovation (UKRI), the National Institute of Health Research (NIHR) and Genome Research Limited, operating as the Wellcome Sanger Institute. Funding was also provided by UKRI through the JUNIPER consortium (grant number MR/V038613/1). Sequencing and bioinformatics support was funded by the Medical Research Council (MRC) core award (MC UU 1201412).

12.
Nat Commun ; 12(1): 6343, 2021 11 03.
Article in English | MEDLINE | ID: covidwho-1500461

ABSTRACT

Peptide secondary metabolites are common in nature and have diverse pharmacologically-relevant functions, from antibiotics to cross-kingdom signaling. Here, we present a method to design large libraries of modified peptides in Escherichia coli and screen them in vivo to identify those that bind to a single target-of-interest. Constrained peptide scaffolds were produced using modified enzymes gleaned from microbial RiPP (ribosomally synthesized and post-translationally modified peptide) pathways and diversified to build large libraries. The binding of a RiPP to a protein target leads to the intein-catalyzed release of an RNA polymerase σ factor, which drives the expression of selectable markers. As a proof-of-concept, a selection was performed for binding to the SARS-CoV-2 Spike receptor binding domain. A 1625 Da constrained peptide (AMK-1057) was found that binds with similar affinity (990 ± 5 nM) as an ACE2-derived peptide. This demonstrates a generalizable method to identify constrained peptides that adhere to a single protein target, as a step towards "molecular glues" for therapeutics and diagnostics.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Peptides/chemistry , Peptides/pharmacology , SARS-CoV-2/drug effects , COVID-19/drug therapy , COVID-19/virology , Drug Design , Drug Evaluation, Preclinical , Humans , Kinetics , Models, Molecular , Peptides/genetics , Protein Binding , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
13.
Commun Biol ; 4(1): 926, 2021 07 29.
Article in English | MEDLINE | ID: covidwho-1387497

ABSTRACT

Patients with cardiovascular comorbidities are more susceptible to severe infection with SARS-CoV-2, known to directly cause pathological damage to cardiovascular tissue. We outline a screening platform using human embryonic stem cell-derived cardiomyocytes, confirmed to express the protein machinery critical for SARS-CoV-2 infection, and a SARS-CoV-2 spike-pseudotyped virus system. The method has allowed us to identify benztropine and DX600 as novel inhibitors of SARS-CoV-2 infection in a clinically relevant stem cell-derived cardiomyocyte line. Discovery of new medicines will be critical for protecting the heart in patients with SARS-CoV-2, and for individuals where vaccination is contraindicated.


Subject(s)
Antiviral Agents/pharmacology , Drug Evaluation, Preclinical/methods , Human Embryonic Stem Cells/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/virology , SARS-CoV-2/physiology , Benztropine/pharmacology , Humans , Myocytes, Cardiac/cytology , Peptides/pharmacology
16.
Crit Care ; 25(1): 316, 2021 08 31.
Article in English | MEDLINE | ID: covidwho-1379798

ABSTRACT

This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2021. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2021 . Further information about the Annual Update in Intensive Care and Emergency Medicine is available from https://link.springer.com/bookseries/8901 .


Subject(s)
COVID-19/therapy , Tracheostomy , Antibodies, Viral/blood , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing , Critical Care , Humans , RNA, Viral/blood , Respiration, Artificial , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Time-to-Treatment , Tracheostomy/methods
17.
Wellcome Open Res ; 6: 120, 2021.
Article in English | MEDLINE | ID: covidwho-1378499

ABSTRACT

Background: Bronchiolitis (most frequently caused by respiratory syncytial virus; RSV) is a common winter disease predominantly affecting children under one year of age. It is a common reason for presentations to an emergency department (ED) and frequently results in hospital admission, contributing to paediatric units approaching or exceeding capacity each winter. During the SARS-CoV-2 pandemic, the circulation of RSV was dramatically reduced in the United Kingdom and Ireland. Evidence from the Southern Hemisphere and other European countries suggests that as social distancing restrictions for SARS-CoV-2 are relaxed, RSV infection returns, causing delayed or even summer epidemics, with different age distributions. Study question: The ability to track, anticipate and respond to a surge in RSV cases is critical for planning acute care delivery. There is an urgent need to understand the onset of RSV spread at the earliest opportunity. This will influence service planning, to inform clinicians whether the population at risk is a wider age range than normal, and whether there are changes in disease severity. This information is also needed to inform decision on the timing of passive immunisation of children at higher risk of hospitalisation, intensive care admission or death with RSV infection, which is a public health priority. Methods and likely impact: This multi-centre prospective observational cohort study will use a well-established research network (Paediatric Emergency Research in the UK and Ireland, PERUKI) to report in real time cases of RSV infection in children aged under two years, through the collection of  essential, but non-identifying patient information. Forty-five centres will gather initial data on age, index of multiple deprivation quintile, clinical features on presentation, and co-morbidities. Each case will be followed up at seven days to identify treatment, viral diagnosis and outcome.  Information be released on a weekly basis and used to support clinical decision making.

18.
Journal of the Intensive Care Society ; : 17511437211034699, 2021.
Article in English | Sage | ID: covidwho-1325297

ABSTRACT

BackgroundCOVID-19 disease often requires invasive ventilatory support. Trans-laryngeal intubation of the trachea may cause laryngeal injury, possibly compounded by coronavirus infection. Fibreoptic Endoscopic Evaluation of Swallowing (FEES) provides anatomical and functional assessment of the larynx, guiding multidisciplinary management. Our aims were to observe the nature of laryngeal abnormalities in patients with COVID-19 following prolonged trans-laryngeal intubation and tracheostomy, and to describe their impact on functional laryngeal outcomes, such as tracheostomy weaning.MethodsA retrospective observational cohort analysis was undertaken between March and December 2020, at a UK tertiary hospital. The Speech and Language Therapy team assessed patients recovering from COVID-19 with voice/swallowing problems identified following trans-laryngeal intubation or tracheostomy using FEES. Laryngeal pathology, treatments, and outcomes relating to tracheostomy and oral feeding were noted.ResultsTwenty-five FEES performed on 16 patients identified a median of 3 (IQR 2?4) laryngeal abnormalities, with 63% considered clinically significant. Most common pathologies were: oedema (n?=?12, 75%);abnormal movement (n?=?12, 75%);atypical lesions (n?=?11, 69%);and erythema (n?=?6, 38%). FEES influenced management: identifying silent aspiration (88% of patients who aspirated (n?=?8)), airway patency issues impacting tracheostomy weaning (n?=?8, 50%), targeted dysphagia therapy (n?=?7, 44%);ENT referral (n?=?6, 38%) and reflux management (n?=?5, 31%).ConclusionsFEES is beneficial in identifying occult pathologies and guiding management for laryngeal recovery. In our cohort, the incidence of laryngeal pathology was higher than a non-COVID-19 cohort with similar characteristics. We recommend multidisciplinary investigation and management of patients recovering from COVID-19 who required prolonged trans-laryngeal intubation and/or tracheostomy to optimise laryngeal recovery.

19.
Euro Surveill ; 26(29)2021 07.
Article in English | MEDLINE | ID: covidwho-1323059

ABSTRACT

The non-pharmaceutical interventions implemented to slow the spread of SARS-CoV-2 have had consequences on the transmission of other respiratory viruses, most notably paediatric respiratory syncytial virus (RSV) and influenza. At the beginning of 2020, lockdown measures in the southern hemisphere led to a winter season with a marked reduction in both infections. Intermittent lockdowns in the northern hemisphere also appeared to interrupt transmission during winter 2020/21. However, a number of southern and northern hemisphere countries have now seen delayed RSV peaks. We examine the implications of these unpredictable disease dynamics for health service delivery in Europe, such as paediatric hospital and intensive care bed space planning, or palivizumab prophylaxis. We discuss the challenges for RSV vaccine trials and influenza immunisation campaigns, and highlight the considerable research opportunities that have arisen with the SARS-CoV-2 pandemic. We argue that the rapid advances in viral whole genome sequencing, phylogenetic analysis, and open data sharing during the pandemic are applicable to the ongoing surveillance of RSV and influenza. Lastly, we outline actions to prepare for forthcoming influenza seasons and for future implementation of RSV vaccines.


Subject(s)
COVID-19 , Influenza, Human , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Child , Communicable Disease Control , Europe , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pandemics/prevention & control , Phylogeny , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/prevention & control , SARS-CoV-2
20.
Emerg Infect Dis ; 27(6): 1-9, 2021 06.
Article in English | MEDLINE | ID: covidwho-1304577

ABSTRACT

Human respiratory syncytial virus (HRSV) is the leading viral cause of serious pediatric respiratory disease, and lifelong reinfections are common. Its 2 major subgroups, A and B, exhibit some antigenic variability, enabling HRSV to circulate annually. Globally, research has increased the number of HRSV genomic sequences available. To ensure accurate molecular epidemiology analyses, we propose a uniform nomenclature for HRSV-positive samples and isolates, and HRSV sequences, namely: HRSV/subgroup identifier/geographic identifier/unique sequence identifier/year of sampling. We also propose a template for submitting associated metadata. Universal nomenclature would help researchers retrieve and analyze sequence data to better understand the evolution of this virus.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Child , Genetic Variation , Genotype , Humans , Molecular Epidemiology , Phylogeny , Respiratory Syncytial Virus, Human/genetics
SELECTION OF CITATIONS
SEARCH DETAIL