Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Immunity ; 2022 Mar 25.
Article in English | MEDLINE | ID: covidwho-1757424

ABSTRACT

Global research to combat the COVID-19 pandemic has led to the isolation and characterization of thousands of human antibodies to the SARS-CoV-2 spike protein, providing an unprecedented opportunity to study the antibody response to a single antigen. Using the information derived from 88 research publications and 13 patents, we assembled a dataset of ∼8,000 human antibodies to the SARS-CoV-2 spike protein from >200 donors. By analyzing immunoglobulin V and D gene usages, complementarity-determining region H3 sequences, and somatic hypermutations, we demonstrated that the common (public) responses to different domains of the spike protein were quite different. We further used these sequences to train a deep-learning model to accurately distinguish between the human antibodies to SARS-CoV-2 spike protein and those to influenza hemagglutinin protein. Overall, this study provides an informative resource for antibody research and enhances our molecular understanding of public antibody responses.

2.
Sci Transl Med ; 14(637): eabi9215, 2022 03 23.
Article in English | MEDLINE | ID: covidwho-1673344

ABSTRACT

Broadly neutralizing antibodies (bnAbs) to coronaviruses (CoVs) are valuable in their own right as prophylactic and therapeutic reagents to treat diverse CoVs and as templates for rational pan-CoV vaccine design. We recently described a bnAb, CC40.8, from a CoV disease 2019 (COVID-19) convalescent donor that exhibits broad reactivity with human ß-CoVs. Here, we showed that CC40.8 targets the conserved S2 stem helix region of the CoV spike fusion machinery. We determined a crystal structure of CC40.8 Fab with a SARS-CoV-2 S2 stem peptide at 1.6-Å resolution and found that the peptide adopted a mainly helical structure. Conserved residues in ß-CoVs interacted with CC40.8 antibody, thereby providing a molecular basis for its broad reactivity. CC40.8 exhibited in vivo protective efficacy against SARS-CoV-2 challenge in two animal models. In both models, CC40.8-treated animals exhibited less weight loss and reduced lung viral titers compared to controls. Furthermore, we noted that CC40.8-like bnAbs are relatively rare in human COVID-19 infection, and therefore, their elicitation may require rational structure-based vaccine design strategies. Overall, our study describes a target on ß-CoV spike proteins for protective antibodies that may facilitate the development of pan-ß-CoV vaccines.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing/metabolism , Antibodies, Viral , COVID-19/immunology , Humans , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
3.
Science ; 375(6582): 782-787, 2022 02 18.
Article in English | MEDLINE | ID: covidwho-1650668

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Beta variant of concern (VOC) resists neutralization by major classes of antibodies from COVID-19 patients and vaccinated individuals. In this study, serum of Beta-infected patients revealed reduced cross-neutralization of wild-type virus. From these patients, we isolated Beta-specific and cross-reactive receptor-binding domain (RBD) antibodies. The Beta-specificity results from recruitment of VOC-specific clonotypes and accommodation of mutations present in Beta and Omicron into a major antibody class that is normally sensitive to these mutations. The Beta-elicited cross-reactive antibodies share genetic and structural features with wild type-elicited antibodies, including a public VH1-58 clonotype that targets the RBD ridge. These findings advance our understanding of the antibody response to SARS-CoV-2 shaped by antigenic drift, with implications for design of next-generation vaccines and therapeutics.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Cross Reactions , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Antibodies, Viral/genetics , Antibodies, Viral/metabolism , COVID-19/virology , Female , Humans , Male , Middle Aged , Neutralization Tests , Protein Binding , Protein Domains , Protein Interaction Domains and Motifs , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
4.
[Unspecified Source]; 2020.
Preprint in English | [Unspecified Source] | ID: ppcovidwho-292779

ABSTRACT

Most antibodies isolated from COVID-19 patients are specific to SARS-CoV-2. COVA1-16 is a relatively rare antibody that also cross-neutralizes SARS-CoV. Here we determined a crystal structure of COVA1-16 Fab with the SARS-CoV-2 RBD, and a negative-stain EM reconstruction with the spike glycoprotein trimer, to elucidate the structural basis of its cross-reactivity. COVA1-16 binds a highly conserved epitope on the SARS-CoV-2 RBD, mainly through a long CDR H3, and competes with ACE2 binding due to steric hindrance rather than epitope overlap. COVA1-16 binds to a flexible up conformation of the RBD on the spike and relies on antibody avidity for neutralization. These findings, along with structural and functional rationale for the epitope conservation, provide a blueprint for development of more universal SARS-like coronavirus vaccines and therapies.

5.
ACS Cent Sci ; 7(11): 1863-1873, 2021 Nov 24.
Article in English | MEDLINE | ID: covidwho-1526050

ABSTRACT

Determining how antibodies interact with the spike (S) protein of the SARS-CoV-2 virus is critical for combating COVID-19. Structural studies typically employ simplified, truncated constructs that may not fully recapitulate the behavior of the original complexes. Here, we combine two single particle mass analysis techniques (mass photometry and charge-detection mass spectrometry) to enable the measurement of full IgG binding to the trimeric SARS-CoV-2 S ectodomain. Our experiments reveal that antibodies targeting the S-trimer typically prefer stoichiometries lower than the symmetry-predicted 3:1 binding. We determine that this behavior arises from the interplay of steric clashes and avidity effects that are not reflected in common antibody constructs (i.e., Fabs). Surprisingly, these substoichiometric complexes are fully effective at blocking ACE2 binding despite containing free receptor binding sites. Our results highlight the importance of studying antibody/antigen interactions using complete, multimeric constructs and showcase the utility of single particle mass analyses in unraveling these complex interactions.

6.
Adv Sci (Weinh) ; 9(1): e2102181, 2022 01.
Article in English | MEDLINE | ID: covidwho-1487434

ABSTRACT

Combinatorial antibody libraries not only effectively reduce antibody discovery to a numbers game, but enable documentation of the history of antibody responses in an individual. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has prompted a wider application of this technology to meet the public health challenge of pandemic threats in the modern era. Herein, a combinatorial human antibody library constructed 20 years before the coronavirus disease 2019 (COVID-19) pandemic is used to discover three highly potent antibodies that selectively bind SARS-CoV-2 spike protein and neutralize authentic SARS-CoV-2 virus. Compared to neutralizing antibodies from COVID-19 patients with generally low somatic hypermutation (SHM), these three antibodies contain over 13-22 SHMs, many of which are involved in specific interactions in their crystal structures with SARS-CoV-2 spike receptor binding domain. The identification of these somatically mutated antibodies in a pre-pandemic library raises intriguing questions about the origin and evolution of these antibodies with respect to their reactivity with SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/genetics , Animals , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/metabolism , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/immunology , Binding Sites , Binding, Competitive , Cell Surface Display Techniques , Chlorocebus aethiops , HEK293 Cells , Humans , Peptide Library , SARS-CoV-2/drug effects , Somatic Hypermutation, Immunoglobulin , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
7.
Nat Commun ; 12(1): 6097, 2021 10 20.
Article in English | MEDLINE | ID: covidwho-1475295

ABSTRACT

Effective treatments against Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) are urgently needed. Monoclonal antibodies have shown promising results in patients. Here, we evaluate the in vivo prophylactic and therapeutic effect of COVA1-18, a neutralizing antibody highly potent against the B.1.1.7 isolate. In both prophylactic and therapeutic settings, SARS-CoV-2 remains undetectable in the lungs of treated hACE2 mice. Therapeutic treatment also causes a reduction in viral loads in the lungs of Syrian hamsters. When administered at 10 mg kg-1 one day prior to a high dose SARS-CoV-2 challenge in cynomolgus macaques, COVA1-18 shows very strong antiviral activity in the upper respiratory compartments. Using a mathematical model, we estimate that COVA1-18 reduces viral infectivity by more than 95% in these compartments, preventing lymphopenia and extensive lung lesions. Our findings demonstrate that COVA1-18 has a strong antiviral activity in three preclinical models and could be a valuable candidate for further clinical evaluation.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antibodies, Neutralizing/administration & dosage , Antiviral Agents/administration & dosage , COVID-19/drug therapy , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/genetics , Animals , Antibodies, Monoclonal/pharmacokinetics , Antiviral Agents/pharmacokinetics , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Disease Models, Animal , Drug Evaluation, Preclinical , Female , Humans , Lung/metabolism , Lung/virology , Macaca fascicularis , Male , Mesocricetus , Mice , Mice, Transgenic , SARS-CoV-2/isolation & purification , Tissue Distribution , Viral Load
8.
Sci Transl Med ; 13(616): eabj5413, 2021 Oct 20.
Article in English | MEDLINE | ID: covidwho-1406601

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern threatens the efficacy of existing vaccines and therapeutic antibodies and underscores the need for additional antibody-based tools that potently neutralize variants by targeting multiple sites of the spike protein. We isolated 216 monoclonal antibodies targeting SARS-CoV-2 from plasmablasts and memory B cells collected from patients with coronavirus disease 2019. The three most potent antibodies targeted distinct regions of the receptor binding domain (RBD), and all three neutralized the SARS-CoV-2 Alpha and Beta variants. The crystal structure of the most potent antibody, CV503, revealed that it binds to the ridge region of SARS-CoV-2 RBD, competes with the angiotensin-converting enzyme 2 receptor, and has limited contact with key variant residues K417, E484, and N501. We designed bispecific antibodies by combining nonoverlapping specificities and identified five bispecific antibodies that inhibit SARS-CoV-2 infection at concentrations of less than 1 ng/ml. Through a distinct mode of action, three bispecific antibodies cross-linked adjacent spike proteins using dual N-terminal domain­RBD specificities. One bispecific antibody was greater than 100-fold more potent than a cocktail of its parent monoclonals in vitro and prevented clinical disease in a hamster model at a dose of 2.5 mg/kg. Two bispecific antibodies in our panel comparably neutralized the Alpha, Beta, Gamma, and Delta variants and wild-type virus. Furthermore, a bispecific antibody that neutralized the Beta variant protected hamsters against SARS-CoV-2 expressing the E484K mutation. Thus, bispecific antibodies represent a promising next-generation countermeasure against SARS-CoV-2 variants of concern.


Subject(s)
Antibodies, Bispecific , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Bispecific/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 , Humans , SARS-CoV-2
9.
Cell Rep ; 33(3): 108274, 2020 10 20.
Article in English | MEDLINE | ID: covidwho-1385223

ABSTRACT

IGHV3-53-encoded neutralizing antibodies are commonly elicited during SARS-CoV-2 infection and target the receptor-binding domain (RBD) of the spike (S) protein. Such IGHV3-53 antibodies generally have a short CDR H3 because of structural constraints in binding the RBD (mode A). However, a small subset of IGHV3-53 antibodies to the RBD contain a longer CDR H3. Crystal structures of two IGHV3-53 neutralizing antibodies here demonstrate that a longer CDR H3 can be accommodated in a different binding mode (mode B). These two classes of IGHV3-53 antibodies both target the ACE2 receptor binding site, but with very different angles of approach and molecular interactions. Overall, these findings emphasize the versatility of IGHV3-53 in this common antibody response to SARS-CoV-2, where conserved IGHV3-53 germline-encoded features can be combined with very different CDR H3 lengths and light chains for SARS-CoV-2 RBD recognition and virus neutralization.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Spike Glycoprotein, Coronavirus/immunology , COVID-19 , Complementarity Determining Regions/immunology , Coronavirus Infections/virology , Crystallography, X-Ray , Humans , Immunoglobulin Heavy Chains/immunology , Neutralization Tests , Pandemics , Pneumonia, Viral/virology , Protein Domains/immunology , SARS-CoV-2
10.
PLoS Pathog ; 17(3): e1009407, 2021 03.
Article in English | MEDLINE | ID: covidwho-1338134

ABSTRACT

Incessant antigenic evolution enables the persistence and spread of influenza virus in the human population. As the principal target of the immune response, the hemagglutinin (HA) surface antigen on influenza viruses continuously acquires and replaces N-linked glycosylation sites to shield immunogenic protein epitopes using host-derived glycans. Anti-glycan antibodies, such as 2G12, target the HIV-1 envelope protein (Env), which is even more extensively glycosylated and contains under-processed oligomannose-type clusters on its dense glycan shield. Here, we illustrate that 2G12 can also neutralize human seasonal influenza A H3N2 viruses that have evolved to present similar oligomannose-type clusters on their HAs from around 20 years after the 1968 pandemic. Using structural biology and mass spectrometric approaches, we find that two N-glycosylation sites close to the receptor binding site (RBS) on influenza hemagglutinin represent the oligomannose cluster recognized by 2G12. One of these glycan sites is highly conserved in all human H3N2 strains and the other emerged during virus evolution. These two N-glycosylation sites have also become crucial for fitness of recent H3N2 strains. These findings shed light on the evolution of the glycan shield on influenza virus and suggest 2G12-like antibodies can potentially act as broad neutralizers to target human enveloped viruses.


Subject(s)
Antibodies, Viral/immunology , HIV-1/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H3N2 Subtype/immunology , Broadly Neutralizing Antibodies , Cross Reactions , HIV Infections/immunology , Humans , Influenza, Human/immunology
11.
Nat Commun ; 12(1): 3815, 2021 06 21.
Article in English | MEDLINE | ID: covidwho-1279879

ABSTRACT

Since the COVID-19 pandemic onset, the antibody response to SARS-CoV-2 has been extensively characterized. Antibodies to the receptor binding domain (RBD) on the spike protein are frequently encoded by IGHV3-53/3-66 with a short complementarity-determining region (CDR) H3. Germline-encoded sequence motifs in heavy chain CDRs H1 and H2 have a major function, but whether any common motifs are present in CDR H3, which is often critical for binding specificity, is not clear. Here, we identify two public clonotypes of IGHV3-53/3-66 RBD antibodies with a 9-residue CDR H3 that pair with different light chains. Distinct sequence motifs on CDR H3 are present in the two public clonotypes that seem to be related to differential light chain pairing. Additionally, we show that Y58F is a common somatic hypermutation that results in increased binding affinity of IGHV3-53/3-66 RBD antibodies with a short CDR H3. These results advance understanding of the antibody response to SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , Antibodies, Neutralizing/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , Antibody Formation , COVID-19/metabolism , COVID-19/virology , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/immunology , Complementarity Determining Regions/metabolism , Crystallography, X-Ray , High-Throughput Nucleotide Sequencing/methods , Humans , Models, Molecular , Protein Binding , Protein Domains , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
12.
Eur J Immunol ; 51(9): 2296-2305, 2021 09.
Article in English | MEDLINE | ID: covidwho-1258058

ABSTRACT

The increasing numbers of infected cases of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses serious threats to public health and the global economy. Most SARS-CoV-2 neutralizing antibodies target the receptor binding domain (RBD) and some the N-terminal domain (NTD) of the spike protein, which is the major antigen of SARS-CoV-2. While the antibody response to RBD has been extensively characterized, the antigenicity and immunogenicity of the NTD protein are less well studied. Using 227 plasma samples from COVID-19 patients, we showed that SARS-CoV-2 NTD-specific antibodies could be induced during infection. As compared to the results of SARS-CoV-2 RBD, the serological response of SARS-CoV-2 NTD is less cross-reactive with SARS-CoV, a pandemic strain that was identified in 2003. Furthermore, neutralizing antibodies are rarely elicited in a mice model when NTD is used as an immunogen. We subsequently demonstrate that NTD has an altered antigenicity when expressed alone. Overall, our results suggest that while NTD offers a supplementary strategy for serology testing, it may not be suitable as an immunogen for vaccine development.


Subject(s)
COVID-19/immunology , Protein Domains/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cell Line , Chlorocebus aethiops , Cross Reactions/immunology , Female , Humans , Mice , Mice, Inbred BALB C , Pandemics/prevention & control , Protein Binding/immunology , Sf9 Cells , Vero Cells
13.
Science ; 373(6556): 818-823, 2021 08 13.
Article in English | MEDLINE | ID: covidwho-1238481

ABSTRACT

Neutralizing antibodies (nAbs) elicited against the receptor binding site (RBS) of the spike protein of wild-type severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are generally less effective against recent variants of concern. RBS residues Glu484, Lys417, and Asn501 are mutated in variants first described in South Africa (B.1.351) and Brazil (P.1). We analyzed their effects on angiotensin-converting enzyme 2 binding, as well as the effects of two of these mutations (K417N and E484K) on nAbs isolated from COVID-19 patients. Binding and neutralization of the two most frequently elicited antibody families (IGHV3-53/3-66 and IGHV1-2), which can both bind the RBS in alternative binding modes, are abrogated by K417N, E484K, or both. These effects can be structurally explained by their extensive interactions with RBS nAbs. However, nAbs to the more conserved, cross-neutralizing CR3022 and S309 sites were largely unaffected. The results have implications for next-generation vaccines and antibody therapies.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Antigenic Variation , Antigens, Viral/chemistry , Antigens, Viral/genetics , Antigens, Viral/metabolism , Binding Sites , Binding Sites, Antibody , COVID-19/virology , Epitopes , Humans , Immune Evasion , Mutation , Protein Binding , Protein Domains , Receptors, Coronavirus/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
14.
J Am Chem Soc ; 143(21): 7930-7934, 2021 06 02.
Article in English | MEDLINE | ID: covidwho-1237972

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry into cells is a complex process that involves (1) recognition of the host entry receptor, angiotensin-converting enzyme 2 (ACE2), by the SARS-CoV-2 spike protein receptor binding domain (RBD), and (2) the subsequent fusion of the viral and cell membranes. Our long-term immune-defense is the production of antibodies (Abs) that recognize the SARS-CoV-2 RBD and successfully block viral infection. Thus, to understand immunity against SARS-CoV-2, a comprehensive molecular understanding of how human SARS-CoV-2 Abs recognize the RBD is needed. Here, we report the sequence-specific backbone assignment of the SARS-CoV-2 RBD and, furthermore, demonstrate that biomolecular NMR spectroscopy chemical shift perturbation (CSP) mapping successfully and rapidly identifies the molecular epitopes of RBD-specific mAbs. By incorporating NMR-based CSP mapping with other molecular techniques to define RBD-mAb interactions and then correlating these data with neutralization efficacy, structure-based approaches for developing improved vaccines and COVID-19 mAb-based therapies will be greatly accelerated.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Antibodies, Monoclonal/chemistry , Antibodies, Viral/chemistry , COVID-19/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal/metabolism , Antibodies, Viral/metabolism , Binding Sites , Epitopes/chemistry , Humans , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Domains , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship
15.
Cell Rep ; 35(8): 109173, 2021 05 25.
Article in English | MEDLINE | ID: covidwho-1227991

ABSTRACT

Individuals with the 2019 coronavirus disease (COVID-19) show varying severity of the disease, ranging from asymptomatic to requiring intensive care. Although monoclonal antibodies specific to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been identified, we still lack an understanding of the overall landscape of B cell receptor (BCR) repertoires in individuals with COVID-19. We use high-throughput sequencing of bulk and plasma B cells collected at multiple time points during infection to characterize signatures of the B cell response to SARS-CoV-2 in 19 individuals. Using principled statistical approaches, we associate differential features of BCRs with different disease severity. We identify 38 significantly expanded clonal lineages shared among individuals as candidates for responses specific to SARS-CoV-2. Using single-cell sequencing, we verify the reactivity of BCRs shared among individuals to SARS-CoV-2 epitopes. Moreover, we identify the natural emergence of a BCR with cross-reactivity to SARS-CoV-1 and SARS-CoV-2 in some individuals. Our results provide insights important for development of rational therapies and vaccines against COVID-19.


Subject(s)
B-Lymphocytes/immunology , COVID-19/immunology , Cross Reactions , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Viral/immunology , COVID-19/genetics , Epitopes , High-Throughput Nucleotide Sequencing , Humans , Severity of Illness Index , Sf9 Cells , Single-Cell Analysis , Spike Glycoprotein, Coronavirus/immunology
16.
J Biol Chem ; 296: 100745, 2021.
Article in English | MEDLINE | ID: covidwho-1213326

ABSTRACT

Fifty years ago, the first landmark structures of antibodies heralded the dawn of structural immunology. Momentum then started to build toward understanding how antibodies could recognize the vast universe of potential antigens and how antibody-combining sites could be tailored to engage antigens with high specificity and affinity through recombination of germline genes (V, D, J) and somatic mutation. Equivalent groundbreaking structures in the cellular immune system appeared some 15 to 20 years later and illustrated how processed protein antigens in the form of peptides are presented by MHC molecules to T cell receptors. Structures of antigen receptors in the innate immune system then explained their inherent specificity for particular microbial antigens including lipids, carbohydrates, nucleic acids, small molecules, and specific proteins. These two sides of the immune system act immediately (innate) to particular microbial antigens or evolve (adaptive) to attain high specificity and affinity to a much wider range of antigens. We also include examples of other key receptors in the immune system (cytokine receptors) that regulate immunity and inflammation. Furthermore, these antigen receptors use a limited set of protein folds to accomplish their various immunological roles. The other main players are the antigens themselves. We focus on surface glycoproteins in enveloped viruses including SARS-CoV-2 that enable entry and egress into host cells and are targets for the antibody response. This review covers what we have learned over the past half century about the structural basis of the immune response to microbial pathogens and how that information can be utilized to design vaccines and therapeutics.


Subject(s)
Adaptive Immunity , Antibodies, Viral/chemistry , Antigens, Viral/chemistry , Immunity, Innate , Receptors, Antigen, T-Cell/chemistry , Receptors, Cytokine/chemistry , SARS-CoV-2/immunology , Allergy and Immunology/history , Animals , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Antibody Specificity , Antigen Presentation , Antigens, Viral/genetics , Antigens, Viral/immunology , COVID-19/immunology , COVID-19/virology , Crystallography/history , Crystallography/methods , History, 20th Century , History, 21st Century , Humans , Protein Folding , Protein Interaction Domains and Motifs , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Cytokine/genetics , Receptors, Cytokine/immunology , SARS-CoV-2/pathogenicity , V(D)J Recombination
17.
Cell Rep ; 35(6): 109109, 2021 05 11.
Article in English | MEDLINE | ID: covidwho-1201425

ABSTRACT

It is unclear whether individuals with enormous diversity in B cell receptor repertoires are consistently able to mount effective antibody responses against SARS-CoV-2. We analyzed antibody responses in a cohort of 55 convalescent patients and isolated 54 potent neutralizing monoclonal antibodies (mAbs). While most of the mAbs target the angiotensin-converting enzyme 2 (ACE2) binding surface on the receptor binding domain (RBD) of SARS-CoV-2 spike protein, mAb 47D1 binds only to one side of the receptor binding surface on the RBD. Neutralization by 47D1 is achieved independent of interfering RBD-ACE2 binding. A crystal structure of the mAb-RBD complex shows that the IF motif at the tip of 47D1 CDR H2 interacts with a hydrophobic pocket in the RBD. Diverse immunoglobulin gene usage and convergent epitope targeting characterize neutralizing antibody responses to SARS-CoV-2, suggesting that vaccines that effectively present the receptor binding site on the RBD will likely elicit neutralizing antibody responses in a large fraction of the population.


Subject(s)
Antibodies, Neutralizing/genetics , COVID-19/genetics , Immunoglobulins/genetics , Adult , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Binding Sites/immunology , COVID-19/immunology , COVID-19/therapy , Epitopes/genetics , Epitopes/immunology , Female , Genes, Immunoglobulin/genetics , Genetic Variation/genetics , Humans , Immunization, Passive/methods , Immunoglobulins/immunology , Male , Middle Aged , Peptidyl-Dipeptidase A/metabolism , Protein Binding/immunology , Protein Domains/genetics , Receptors, Virus/immunology , Receptors, Virus/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
18.
Cell Host Microbe ; 29(5): 806-818.e6, 2021 05 12.
Article in English | MEDLINE | ID: covidwho-1184886

ABSTRACT

Coronaviruses have caused several human epidemics and pandemics including the ongoing coronavirus disease 2019 (COVID-19). Prophylactic vaccines and therapeutic antibodies have already shown striking effectiveness against COVID-19. Nevertheless, concerns remain about antigenic drift in SARS-CoV-2 as well as threats from other sarbecoviruses. Cross-neutralizing antibodies to SARS-related viruses provide opportunities to address such concerns. Here, we report on crystal structures of a cross-neutralizing antibody, CV38-142, in complex with the receptor-binding domains from SARS-CoV-2 and SARS-CoV. Recognition of the N343 glycosylation site and water-mediated interactions facilitate cross-reactivity of CV38-142 to SARS-related viruses, allowing the antibody to accommodate antigenic variation in these viruses. CV38-142 synergizes with other cross-neutralizing antibodies, notably COVA1-16, to enhance neutralization of SARS-CoV and SARS-CoV-2, including circulating variants of concern B.1.1.7 and B.1.351. Overall, this study provides valuable information for vaccine and therapeutic design to address current and future antigenic drift in SARS-CoV-2 and to protect against zoonotic SARS-related coronaviruses.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , SARS Virus/immunology , SARS-CoV-2/immunology , Severe Acute Respiratory Syndrome/prevention & control , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Cross Reactions , Humans , Spike Glycoprotein, Coronavirus/metabolism
19.
Sci Adv ; 7(12)2021 03.
Article in English | MEDLINE | ID: covidwho-1142982

ABSTRACT

Vaccination against SARS-CoV-2 provides an effective tool to combat the COVID-19 pandemic. Here, we combined antigen optimization and nanoparticle display to develop vaccine candidates for SARS-CoV-2. We first displayed the receptor-binding domain (RBD) on three self-assembling protein nanoparticle (SApNP) platforms using the SpyTag/SpyCatcher system. We then identified heptad repeat 2 (HR2) in S2 as the cause of spike metastability, designed an HR2-deleted glycine-capped spike (S2GΔHR2), and displayed S2GΔHR2 on SApNPs. An antibody column specific for the RBD enabled tag-free vaccine purification. In mice, the 24-meric RBD-ferritin SApNP elicited a more potent neutralizing antibody (NAb) response than the RBD alone and the spike with two stabilizing proline mutations in S2 (S2P). S2GΔHR2 elicited twofold higher NAb titers than S2P, while S2GΔHR2 SApNPs derived from multilayered E2p and I3-01v9 60-mers elicited up to 10-fold higher NAb titers. The S2GΔHR2-presenting I3-01v9 SApNP also induced critically needed T cell immunity, thereby providing a promising vaccine candidate.


Subject(s)
COVID-19 Vaccines , COVID-19/immunology , Nanoparticles , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , COVID-19 Vaccines/pharmacology , HEK293 Cells , Humans , Immunogenicity, Vaccine , Mice , Mice, Inbred BALB C , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Protein Domains , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/pharmacology
20.
Biochem Biophys Res Commun ; 538: 192-203, 2021 01 29.
Article in English | MEDLINE | ID: covidwho-1125111

ABSTRACT

Immediately from the outset of the COVID-19 pandemic, researchers from diverse biomedical and biological disciplines have united to study the novel pandemic virus, SARS-CoV-2. The antibody response to SARS-CoV-2 has been a major focus of COVID-19 research due to its clinical relevance and importance in vaccine and therapeutic development. Isolation and characterization of antibodies to SARS-CoV-2 have been accumulating at an unprecedented pace. Most of the SARS-CoV-2 neutralizing antibodies to date target the spike (S) protein receptor binding domain (RBD), which engages the host receptor ACE2 for viral entry. Here we review the binding sites and molecular features of monoclonal antibodies that target the SARS-CoV-2 RBD, including a few that also cross-neutralize SARS-CoV.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Receptors, Virus/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/chemistry , Binding Sites/immunology , Humans , Protein Binding/immunology , Protein Domains/immunology , Receptors, Virus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL