Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
iScience ; 25(4), 2022.
Article in English | EuropePMC | ID: covidwho-1781054

ABSTRACT

Summary Broadly effective antiviral therapies must be developed to be ready for clinical trials, which should begin soon after the emergence of new life-threatening viruses. Here, we pave the way towards this goal by reviewing conserved druggable virus-host interactions, mechanisms of action, immunomodulatory properties of available broad-spectrum antivirals (BSAs), routes of BSA delivery, and interactions of BSAs with other antivirals. Based on the review, we concluded that the range of indications of BSAs can be expanded, and new pan- and cross-viral mono- and combinational therapies can be developed. We have also developed a new scoring algorithm that can help identify the most promising few of the thousands of potential BSAs and BSA-containing drug cocktails (BCCs) to prioritize their development during the critical period between the identification of a new virus and the development of virus-specific vaccines, drugs, and therapeutic antibodies. Graphical Pharmaceutical preparation;Pharmaceutical science;Pharmacology;Chemistry

2.
Viruses ; 13(12)2021 12 11.
Article in English | MEDLINE | ID: covidwho-1572663

ABSTRACT

BACKGROUND: There is an urgent need for new antivirals with powerful therapeutic potential and tolerable side effects. METHODS: Here, we tested the antiviral properties of interferons (IFNs), alone and with other drugs in vitro. RESULTS: While IFNs alone were insufficient to completely abolish replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), IFNα, in combination with remdesivir, EIDD-2801, camostat, cycloheximide, or convalescent serum, proved to be more effective. Transcriptome and metabolomic analyses revealed that the IFNα-remdesivir combination suppressed SARS-CoV-2-mediated changes in Calu-3 cells and lung organoids, although it altered the homeostasis of uninfected cells and organoids. We also demonstrated that IFNα combinations with sofosbuvir, telaprevir, NITD008, ribavirin, pimodivir, or lamivudine were effective against HCV, HEV, FLuAV, or HIV at lower concentrations, compared to monotherapies. CONCLUSIONS: Altogether, our results indicated that IFNα can be combined with drugs that affect viral RNA transcription, protein synthesis, and processing to make synergistic combinations that can be attractive targets for further pre-clinical and clinical development against emerging and re-emerging viral infections.


Subject(s)
Antiviral Agents/pharmacology , Interferon-alpha/pharmacology , SARS-CoV-2/drug effects , Cell Line , Drug Synergism , Humans , Lung/drug effects , Lung/metabolism , Lung/virology , Metabolome/drug effects , Organoids , RNA, Viral/biosynthesis , RNA, Viral/drug effects , Signal Transduction/drug effects , Transcriptome/drug effects , Virus Replication/drug effects , Viruses/classification , Viruses/drug effects
3.
Virusdisease ; 31(4): 549-553, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1227932

ABSTRACT

The ongoing coronavirus disease 19 caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become fatal for the world with affected population crossing over 25 million in more than 217 countries, consequently declared a global pandemic by the World Health Organization. Unfortunately, neither specific prophylactic or therapeutic drugs nor vaccines are available. To address the unmet medical needs, we explored a strategy identifying new compounds targeting the main protease (Mpro) of SARS-CoV-2. Targeting the SARS-CoV-2 Mpro crystal structure (PDB ID: 6LU7) a combination of in silico screening, molecular docking, and dynamic approaches, a set of 5000 compounds of the ZINC database were screened. As a result, we identified and ranked the top 20 compounds based on the scores of ligand-interaction, their drug-likeness properties, and their predicted antiviral efficacies. The prominent drug-like and potent inhibitory compounds are 2-[2-(2-aminoacetyl) aminoacetyl] amino-3-(4-hydroxyphenyl)-propanamide (ZINC000004762511), 6'-fluoroaristeromycin (ZINC000001483267) and cyclo (L-histidyl-L-histidyl) (ZINC000005116916) scaffolds. Further in vitro and in vivo validations are required to demonstrate anti-SARS-CoV-2 activities.

4.
Viruses ; 13(4)2021 04 09.
Article in English | MEDLINE | ID: covidwho-1178434

ABSTRACT

Therapeutic options for coronaviruses remain limited. To address this unmet medical need, we screened 5406 compounds, including United States Food and Drug Administration (FDA)-approved drugs and bioactives, for activity against a South Korean Middle East respiratory syndrome coronavirus (MERS-CoV) clinical isolate. Among 221 identified hits, 54 had therapeutic indexes (TI) greater than 6, representing effective drugs. The time-of-addition studies with selected drugs demonstrated eight and four FDA-approved drugs which acted on the early and late stages of the viral life cycle, respectively. Confirmed hits included several cardiotonic agents (TI > 100), atovaquone, an anti-malarial (TI > 34), and ciclesonide, an inhalable corticosteroid (TI > 6). Furthermore, utilizing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we tested combinations of remdesivir with selected drugs in Vero-E6 and Calu-3 cells, in lung organoids, and identified ciclesonide, nelfinavir, and camostat to be at least additive in vitro. Our results identify potential therapeutic options for MERS-CoV infections, and provide a basis to treat coronavirus disease 2019 (COVID-19) and other coronavirus-related illnesses.


Subject(s)
Antiviral Agents/pharmacology , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/isolation & purification , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , COVID-19/drug therapy , Coronavirus Infections/virology , Drug Approval , Drug Evaluation, Preclinical , Drug Repositioning , Drug Synergism , Humans , Life Cycle Stages/drug effects , Middle East Respiratory Syndrome Coronavirus/growth & development , Small Molecule Libraries/pharmacology
5.
J Biomol Struct Dyn ; 40(7): 3129-3131, 2022 04.
Article in English | MEDLINE | ID: covidwho-917572

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a highly contagious disease caused by severe acute respiratory coronavirus 2 (SARS-CoV-2). This virus is capable of human-to-human transmission, and is spreading rapidly round the globe, with markedly high fatality rates. Unfortunately, there are neither vaccines nor specific therapies available to combat it, and the developments of such approaches depend on pursuing multiple avenues in biomedical science. Accordingly, in this paper we highlight one such avenue-nanobodies-for potential utility in therapeutic and diagnostic interventions to combat COVID-19.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Single-Domain Antibodies , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL