Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Emerg Infect Dis ; 28(4): 820-827, 2022 04.
Article in English | MEDLINE | ID: covidwho-1760183

ABSTRACT

We analyzed a pharmacy dataset to assess the 20% decline in tuberculosis (TB) cases reported to the US National Tuberculosis Surveillance System (NTSS) during the coronavirus disease pandemic in 2020 compared with the 2016-2019 average. We examined the correlation between TB medication dispensing data to TB case counts in NTSS and used a seasonal autoregressive integrated moving average model to predict expected 2020 counts. Trends in the TB medication data were correlated with trends in NTSS data during 2006-2019. There were fewer prescriptions and cases in 2020 than would be expected on the basis of previous trends. This decrease was particularly large during April-May 2020. These data are consistent with NTSS data, suggesting that underreporting is not occurring but not ruling out underdiagnosis or actual decline. Understanding the mechanisms behind the 2020 decline in reported TB cases will help TB programs better prepare for postpandemic cases.


Subject(s)
COVID-19 , Pharmacy , Tuberculosis , COVID-19/epidemiology , Humans , Outpatients , Pandemics , Population Surveillance , Tuberculosis/diagnosis , Tuberculosis/drug therapy , Tuberculosis/epidemiology , United States/epidemiology
2.
Pediatrics ; 147(4)2021 04.
Article in English | MEDLINE | ID: covidwho-1052449

ABSTRACT

OBJECTIVES: In late June 2020, a large outbreak of coronavirus disease 2019 (COVID-19) occurred at a sleep-away youth camp in Georgia, affecting primarily persons ≤21 years. We conducted a retrospective cohort study among campers and staff (attendees) to determine the extent of the outbreak and assess factors contributing to transmission. METHODS: Attendees were interviewed to ascertain demographic characteristics, known exposures to COVID-19 and community exposures, and mitigation measures before, during, and after attending camp. COVID-19 case status was determined for all camp attendees on the basis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) test results and reported symptoms. We calculated attack rates and instantaneous reproduction numbers and sequenced SARS-CoV-2 viral genomes from the outbreak. RESULTS: Among 627 attendees, the median age was 15 years (interquartile range: 12-16 years); 56% (351 of 627) of attendees were female. The attack rate was 56% (351 of 627) among all attendees. On the basis of date of illness onset or first positive test result on a specimen collected, 12 case patients were infected before arriving at camp and 339 case patients were camp associated. Among 288 case patients with available symptom information, 45 (16%) were asymptomatic. Despite cohorting, 50% of attendees reported direct contact with people outside their cabin cohort. On the first day of camp session, the instantaneous reproduction number was 10. Viral genomic diversity was low. CONCLUSIONS: Few introductions of SARS-CoV-2 into a youth congregate setting resulted in a large outbreak. Testing strategies should be combined with prearrival quarantine, routine symptom monitoring with appropriate isolation and quarantine, cohorting, social distancing, mask wearing, and enhanced disinfection and hand hygiene. Promotion of mitigation measures among younger populations is needed.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Camping , Disease Outbreaks , Adolescent , Adult , Child , Cohort Studies , Female , Georgia/epidemiology , Humans , Male , Middle Aged , Retrospective Studies , Young Adult
3.
MMWR Morb Mortal Wkly Rep ; 69(34): 1166-1169, 2020 Aug 28.
Article in English | MEDLINE | ID: covidwho-732630

ABSTRACT

Although non-Hispanic American Indian and Alaska Native (AI/AN) persons account for 0.7% of the U.S. population,* a recent analysis reported that 1.3% of coronavirus disease 2019 (COVID-19) cases reported to CDC with known race and ethnicity were among AI/AN persons (1). To assess the impact of COVID-19 among the AI/AN population, reports of laboratory-confirmed COVID-19 cases during January 22†-July 3, 2020 were analyzed. The analysis was limited to 23 states§ with >70% complete race/ethnicity information and five or more laboratory-confirmed COVID-19 cases among both AI/AN persons (alone or in combination with other races and ethnicities) and non-Hispanic white (white) persons. Among 424,899 COVID-19 cases reported by these states, 340,059 (80%) had complete race/ethnicity information; among these 340,059 cases, 9,072 (2.7%) occurred among AI/AN persons, and 138,960 (40.9%) among white persons. Among 340,059 cases with complete patient race/ethnicity data, the cumulative incidence among AI/AN persons in these 23 states was 594 per 100,000 AI/AN population (95% confidence interval [CI] = 203-1,740), compared with 169 per 100,000 white population (95% CI = 137-209) (rate ratio [RR] = 3.5; 95% CI = 1.2-10.1). AI/AN persons with COVID-19 were younger (median age = 40 years; interquartile range [IQR] = 26-56 years) than were white persons (median age = 51 years; IQR = 32-67 years). More complete case report data and timely, culturally responsive, and evidence-based public health efforts that leverage the strengths of AI/AN communities are needed to decrease COVID-19 transmission and improve patient outcomes.


Subject(s)
Alaskan Natives/statistics & numerical data , Coronavirus Infections/ethnology , Health Status Disparities , Indians, North American/statistics & numerical data , Pneumonia, Viral/ethnology , Adolescent , Adult , Aged , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Child , Child, Preschool , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/therapy , Female , Humans , Incidence , Infant , Infant, Newborn , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/therapy , SARS-CoV-2 , Severity of Illness Index , Treatment Outcome , United States/epidemiology , Young Adult
4.
MMWR Morb Mortal Wkly Rep ; 69(15): 451-457, 2020 Apr 17.
Article in English | MEDLINE | ID: covidwho-46961

ABSTRACT

Community mitigation activities (also referred to as nonpharmaceutical interventions) are actions that persons and communities can take to slow the spread of infectious diseases. Mitigation strategies include personal protective measures (e.g., handwashing, cough etiquette, and face coverings) that persons can use at home or while in community settings; social distancing (e.g., maintaining physical distance between persons in community settings and staying at home); and environmental surface cleaning at home and in community settings, such as schools or workplaces. Actions such as social distancing are especially critical when medical countermeasures such as vaccines or therapeutics are not available. Although voluntary adoption of social distancing by the public and community organizations is possible, public policy can enhance implementation. The CDC Community Mitigation Framework (1) recommends a phased approach to implementation at the community level, as evidence of community spread of disease increases or begins to decrease and according to severity. This report presents initial data from the metropolitan areas of San Francisco, California; Seattle, Washington; New Orleans, Louisiana; and New York City, New York* to describe the relationship between timing of public policy measures, community mobility (a proxy measure for social distancing), and temporal trends in reported coronavirus disease 2019 (COVID-19) cases. Community mobility in all four locations declined from February 26, 2020 to April 1, 2020, decreasing with each policy issued and as case counts increased. This report suggests that public policy measures are an important tool to support social distancing and provides some very early indications that these measures might help slow the spread of COVID-19.


Subject(s)
Communicable Disease Control/methods , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Urban Population/statistics & numerical data , COVID-19 , Humans , Public Policy , Time Factors , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL