Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Add filters

Year range
Topics in Antiviral Medicine ; 30(1 SUPPL):247-248, 2022.
Article in English | EMBASE | ID: covidwho-1880706


Background: The biologic mechanisms underlying neurologic post-acute-sequelae of SARS-CoV-2 infection (PASC) are incompletely understood. We measured plasma markers of neuronal injury (glial fibrillary acidic protein [GFAP], neurofilament light chain [NfL]) and inflammation among a cohort of people with prior confirmed SARS-CoV-2 infection at early and late recovery following the initial illness (defined as < and > 90 days since COVID-19 onset, respectively). We hypothesized that those experiencing persistent neurologic symptoms would have elevations in these markers. Methods: The primary clinical outcome was the presence of self-reported central nervous system (CNS) PASC symptoms during the late recovery timepoint. We compared fold-changes in marker values between those with and without CNS PASC symptoms using linear mixed effects models and examined relationships between neurologic and immunologic markers using rank linear correlations. Results: Of 121 individuals, 52 reported CNS PASC symptoms. During early recovery, those who went on to report CNS PASC symptoms had elevations in GFAP (1.3-fold higher mean ratio, 95% CI 1.04-1.63, p=0.02), but not NfL (1.06-fold higher mean ratio, 95% CI 0.89-1.26, p=0.54). During late recovery, neither GFAP nor NfL levels were elevated among those with CNS PASC symptoms. Although absolute levels of NfL did not differ, those who reported CNS PASC symptoms demonstrated a stronger downward trend over time in comparison to those who did not report CNS PASC symptoms (p=0.041). Those who went on to report CNS PASC also exhibited elevations in IL-6 (48% higher during early recovery and 38% higher during late recovery), MCP-1 (19% higher during early recovery), and TNF-alpha (19% higher during early recovery and 13% higher during late recovery). GFAP and NfL correlated with levels of several immune markers during early recovery (MCP-1, IL-6, TNF-a, IFN-g);these correlations were attenuated during late recovery. Conclusion: Self-reported neurologic symptoms present approximately four months following SARS-CoV-2 infection are associated with elevations in markers of neurologic injury and inflammation at early recovery timepoints, suggesting that early injury can result in long-term disease. The correlation of GFAP and NfL with markers of systemic immune activation suggests one possible mechanism that might contribute to these symptoms. Additional work will be needed to better characterize these processes and to identify interventions to prevent or treat this condition.

PubMed; 2022.
Preprint in English | PubMed | ID: ppcovidwho-338328


BACKGROUND: Mechanisms underlying persistent cardiopulmonary symptoms following SARS-CoV-2 infection (post-acute sequelae of COVID-19 "PASC" or "Long COVID") remain unclear. The purpose of this study was to elucidate the pathophysiology of cardiopulmonary PASC using multimodality cardiovascular imaging including cardiopulmonary exercise testing (CPET), cardiac magnetic resonance imaging (CMR) and ambulatory rhythm monitoring. METHODS: We performed CMR, CPET, and ambulatory rhythm monitoring among adults > 1 year after PCR-confirmed SARS-CoV-2 infection in the UCSF Long-Term Impact of Infection with Novel Coronavirus cohort (LIINC;NCT04362150 ) and correlated findings with previously measured biomarkers. We used logistic regression to estimate associations with PASC symptoms (dyspnea, chest pain, palpitations, and fatigue) adjusted for confounders and linear regression to estimate differences between those with and without symptoms adjusted for confounders. RESULTS: Out of 120 participants in the cohort, 46 participants (unselected for symptom status) had at least one advanced cardiac test performed at median 17 months following initial SARS-CoV-2 infection. Median age was 52 (IQR 42-61), 18 (39%) were female, and 6 (13%) were hospitalized for severe acute infection. On CMR (n=39), higher extracellular volume was associated with symptoms, but no evidence of late-gadolinium enhancement or differences in T1 or T2 mapping were demonstrated. We did not find arrhythmias on ambulatory monitoring. In contrast, on CPET (n=39), 13/23 (57%) with cardiopulmonary symptoms or fatigue had reduced exercise capacity (peak VO 2 <85% predicted) compared to 2/16 (13%) without symptoms (p=0.008). The adjusted difference in peak VO 2 was 5.9 ml/kg/min lower (-9.6 to -2.3;p=0.002) or -21% predicted (-35 to -7;p=0.006) among those with symptoms. Chronotropic incompetence was the primary abnormality among 9/15 (60%) with reduced peak VO 2 . Adjusted heart rate reserve <80% was associated with reduced exercise capacity (OR 15.6, 95%CI 1.30-187;p=0.03). Inflammatory markers (hsCRP, IL-6, TNF-alpha) and SARS-CoV-2 antibody levels measured early in PASC were negatively correlated with peak VO 2 more than 1 year later. CONCLUSIONS: Cardiopulmonary symptoms and elevated inflammatory markers present early in PASC are associated with objectively reduced exercise capacity measured on cardiopulmonary exercise testing more than 1 year following COVID-19. Chronotropic incompetence may explain reduced exercise capacity among some individuals with PASC. Clinical Perspective: What is New?Elevated inflammatory markers in early post-acute COVID-19 are associated with reduced exercise capacity more than 1 year later.Impaired chronotropic response to exercise is associated with reduced exercise capacity and cardiopulmonary symptoms more than 1 year after SARS-CoV-2 infection.Findings on ambulatory rhythm monitoring point to perturbed autonomic function, while cardiac MRI findings argue against myocardial dysfunction and myocarditis. Clinical Implications: Cardiopulmonary testing to identify etiologies of persistent symptoms in post-acute sequalae of COVID-19 or "Long COVID" should be performed in a manner that allows for assessment of heart rate response to exercise. Therapeutic trials of anti-inflammatory and exercise strategies in PASC are urgently needed and should include assessment of symptoms and objective testing with cardiopulmonary exercise testing.