Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Clin Infect Dis ; 2022 Mar 01.
Article in English | MEDLINE | ID: covidwho-1868256

ABSTRACT

BACKGROUND: SARS-CoV-2 infection can lead to severe acute respiratory distress syndrome needing intensive care admission and may lead to death. As a virus that transmits by respiratory droplets and aerosols, determining the duration of viable virus shedding from the respiratory tract is critical for patient prognosis, and informs infection control measures both within healthcare settings and the public domain. METHODS: We prospectively examined upper and lower airway respiratory secretions for both viral RNA and infectious virions in mechanically ventilated patients admitted to the intensive care unit of the University Hospital of Wales. Samples were taken from the oral cavity (saliva), oropharynx (sub-glottic aspirate), or lower respiratory tract (non-directed bronchoalveolar lavage (NBL) or bronchoalveolar lavage (BAL)) and analyzed by both qPCR and plaque assay. RESULTS: 117 samples were obtained from 25 patients. qPCR showed extremely high rates of positivity across all sample types, however live virus was far more common in saliva (68%) than in BAL/NBAL (32%). Average titres of live virus were higher in subglottic aspirates (4.5x10 7) than in saliva (2.2x10 6) or BAL/NBAL (8.5x10 6) and reached >10 8 PFU/ml in some samples. The longest duration of shedding was 98 days, while most patients (14/25) shed live virus for 20 days or longer. CONCLUSIONS: Intensive care unit patients infected with SARS-CoV-2 can shed high titres of virus both in the upper and lower respiratory tract and tend to be prolonged shedders. This information is important for decision making around cohorting patients, de-escalation of PPE, and undertaking potential aerosol generating procedures.

2.
J Fungi (Basel) ; 8(1)2022 Jan 14.
Article in English | MEDLINE | ID: covidwho-1625904

ABSTRACT

The COVID-19 pandemic has resulted in large numbers of patients requiring critical care management. With the established association between severe respiratory virus infection and invasive pulmonary aspergillosis (7.6% for COVID-19-associated pulmonary aspergillosis (CAPA)), the pandemic places a significant number of patients at potential risk from secondary invasive fungal disease. We described a case of CAPA with substantial supporting mycological evidence, highlighting the need to employ strategic diagnostic algorithms and weighted definitions to improve the accuracy in diagnosing CAPA.

3.
N Engl J Med ; 384(24): 2283-2294, 2021 06 17.
Article in English | MEDLINE | ID: covidwho-1275997

ABSTRACT

BACKGROUND: Targeted temperature management is recommended for patients after cardiac arrest, but the supporting evidence is of low certainty. METHODS: In an open-label trial with blinded assessment of outcomes, we randomly assigned 1900 adults with coma who had had an out-of-hospital cardiac arrest of presumed cardiac or unknown cause to undergo targeted hypothermia at 33°C, followed by controlled rewarming, or targeted normothermia with early treatment of fever (body temperature, ≥37.8°C). The primary outcome was death from any cause at 6 months. Secondary outcomes included functional outcome at 6 months as assessed with the modified Rankin scale. Prespecified subgroups were defined according to sex, age, initial cardiac rhythm, time to return of spontaneous circulation, and presence or absence of shock on admission. Prespecified adverse events were pneumonia, sepsis, bleeding, arrhythmia resulting in hemodynamic compromise, and skin complications related to the temperature management device. RESULTS: A total of 1850 patients were evaluated for the primary outcome. At 6 months, 465 of 925 patients (50%) in the hypothermia group had died, as compared with 446 of 925 (48%) in the normothermia group (relative risk with hypothermia, 1.04; 95% confidence interval [CI], 0.94 to 1.14; P = 0.37). Of the 1747 patients in whom the functional outcome was assessed, 488 of 881 (55%) in the hypothermia group had moderately severe disability or worse (modified Rankin scale score ≥4), as compared with 479 of 866 (55%) in the normothermia group (relative risk with hypothermia, 1.00; 95% CI, 0.92 to 1.09). Outcomes were consistent in the prespecified subgroups. Arrhythmia resulting in hemodynamic compromise was more common in the hypothermia group than in the normothermia group (24% vs. 17%, P<0.001). The incidence of other adverse events did not differ significantly between the two groups. CONCLUSIONS: In patients with coma after out-of-hospital cardiac arrest, targeted hypothermia did not lead to a lower incidence of death by 6 months than targeted normothermia. (Funded by the Swedish Research Council and others; TTM2 ClinicalTrials.gov number, NCT02908308.).


Subject(s)
Fever/therapy , Hypothermia, Induced , Out-of-Hospital Cardiac Arrest/therapy , Aged , Body Temperature , Cardiopulmonary Resuscitation/methods , Coma/etiology , Coma/therapy , Female , Fever/etiology , Humans , Hypothermia, Induced/adverse effects , Kaplan-Meier Estimate , Male , Middle Aged , Out-of-Hospital Cardiac Arrest/complications , Out-of-Hospital Cardiac Arrest/mortality , Single-Blind Method , Treatment Outcome
4.
Thorax ; 77(2): 129-135, 2022 02.
Article in English | MEDLINE | ID: covidwho-1247403

ABSTRACT

BACKGROUND: COVID-19 has become the most common cause of acute respiratory distress syndrome (ARDS) worldwide. Features of the pathophysiology and clinical presentation partially distinguish it from 'classical' ARDS. A Research and Development (RAND) analysis gauged the opinion of an expert panel about the management of ARDS with and without COVID-19 as the precipitating cause, using recent UK guidelines as a template. METHODS: An 11-person panel comprising intensive care practitioners rated the appropriateness of ARDS management options at different times during hospital admission, in the presence or absence of, or varying severity of SARS-CoV-2 infection on a scale of 1-9 (where 1-3 is inappropriate, 4-6 is uncertain and 7-9 is appropriate). A summary of the anonymised results was discussed at an online meeting moderated by an expert in RAND methodology. The modified online survey comprising 76 questions, subdivided into investigations (16), non-invasive respiratory support (18), basic intensive care unit management of ARDS (20), management of refractory hypoxaemia (8), pharmacotherapy (7) and anticoagulation (7), was completed again. RESULTS: Disagreement between experts was significant only when addressing the appropriateness of diagnostic bronchoscopy in patients with confirmed or suspected COVID-19. Adherence to existing published guidelines for the management of ARDS for relevant evidence-based interventions was recommended. Responses of the experts to the final survey suggested that the supportive management of ARDS should be the same, regardless of a COVID-19 diagnosis. For patients with ARDS with COVID-19, the panel recommended routine treatment with corticosteroids and a lower threshold for full anticoagulation based on a high index of suspicion for venous thromboembolic disease. CONCLUSION: The expert panel found no reason to deviate from the evidence-based supportive strategies for managing ARDS outlined in recent guidelines.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , COVID-19 Testing , Humans , Pandemics , Research , Respiration, Artificial , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/therapy , SARS-CoV-2 , United Kingdom/epidemiology
5.
Ann Clin Biochem ; 58(2): 123-131, 2021 03.
Article in English | MEDLINE | ID: covidwho-1067019

ABSTRACT

BACKGROUND: Serological assays for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) have roles in seroepidemiology, convalescent plasma-testing, antibody durability and vaccine studies. Currently, SARS-CoV-2 serology is performed using serum/plasma collected by venepuncture. Dried blood spot (DBS) testing offers significant advantages as it is minimally invasive, avoids venepuncture with specimens being mailed to the laboratory. METHODS: A pathway utilizing a newborn screening laboratory infrastructure was developed using an enzyme-linked immunosorbent assay to detect IgG antibodies against the receptor-binding domain of the SARS-CoV-2 spike protein in DBS specimens. Paired plasma and DBS specimens from SARS-CoV-2 antibody-positive and -negative subjects and polymerase chain reaction positive subjects were tested. DBS specimen stability, effect of blood volume and punch location were also evaluated. RESULTS: DBS specimens from antibody-negative (n = 85) and -positive (n = 35) subjects and polymerase chain reaction positive subjects (n = 11) had a mean (SD; range) optical density (OD) of 0.14 (0.046; 0.03-0.27), 0.98 (0.41; 0.31-1.64) and 1.12 (0.37; 0.49-1.54), respectively. An action value OD >0.28 correctly assigned all cases. The weighted Deming regression for comparison of the DBS and the plasma assay yielded: y = 0.004041 + 1.005x, r = 0.991, Sy/x 0.171, n = 82. Extraction efficiency of antibodies from DBS specimens was >99%. DBS specimens were stable for at least 28 days at ambient room temperature and humidity. CONCLUSIONS: SARS-CoV-2 IgG receptor-binding domain antibodies can be reliably detected in DBS specimens. DBS serological testing offers lower costs than either point of care or serum/plasma assays that require patient travel, phlebotomy and hospital/clinic resources; the development of a DBS assay may be particularly important for resource poor settings.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Serological Testing , COVID-19/immunology , Dried Blood Spot Testing , Immunoglobulin G/immunology , SARS-CoV-2/immunology , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay , Humans , Spike Glycoprotein, Coronavirus/immunology
6.
Function (Oxf) ; 1(1): zqaa002, 2020.
Article in English | MEDLINE | ID: covidwho-936392

ABSTRACT

Emerging studies increasingly demonstrate the importance of the throat and salivary glands as sites of virus replication and transmission in early COVID-19 disease. SARS-CoV-2 is an enveloped virus, characterized by an outer lipid membrane derived from the host cell from which it buds. While it is highly sensitive to agents that disrupt lipid biomembranes, there has been no discussion about the potential role of oral rinsing in preventing transmission. Here, we review known mechanisms of viral lipid membrane disruption by widely available dental mouthwash components that include ethanol, chlorhexidine, cetylpyridinium chloride, hydrogen peroxide, and povidone-iodine. We also assess existing formulations for their potential ability to disrupt the SARS-CoV-2 lipid envelope, based on their concentrations of these agents, and conclude that several deserve clinical evaluation. We highlight that already published research on other enveloped viruses, including coronaviruses, directly supports the idea that oral rinsing should be considered as a potential way to reduce transmission of SARS-CoV-2. Research to test this could include evaluating existing or specifically tailored new formulations in well-designed viral inactivation assays, then in clinical trials. Population-based interventions could be undertaken with available mouthwashes, with active monitoring of outcome to determine efficacy. This is an under-researched area of major clinical need.

SELECTION OF CITATIONS
SEARCH DETAIL