ABSTRACT
INTRODUCTION: Recommended Summary Plan for Emergency Care and Treatment (ReSPECT) is a UK advance care planning (ACP) initiative aiming to standardise the process of creating personalised recommendations for a person's clinical care in a future emergency and therefore improve person-focused care. Implementation of the ReSPECT process across a large geographical area, involving both community and secondary care, has not previously been studied. In particular, it not known whether such implementation is associated with any change in outcomes for those patients with a ReSPECT form.Implementation of ReSPECT in the Bristol, North Somerset and South Gloucestershire (BNSSG) Clinical Commissioning Group (CCG) area overlapped with the first UK COVID-19 wave. It is unclear what impact the pandemic had on the implementation of ReSPECT and if this affected the type of patients who underwent the ReSPECT process, such as those with specific diagnoses or living in care homes. Patterns of clinical recommendations documented on ReSPECT forms during the first year of its implementation may also have changed, particularly with reference to the pandemic.To determine the equity and potential benefits of implementation of the ReSPECT form process in BNSSG and contribute to the ACP evidence base, this study will describe the characteristics of patients in the BNSSG area who had a completed ReSPECT form recorded in their primary care medical records before, during and after the first wave of the COVID-19 pandemic; describe the content of ReSPECT forms; and analyse outcomes for those patients who died with a ReSPECT form. METHODS AND ANALYSIS: We will perform an observational retrospective study on data, collected from October 2019 for 12 months. Data will be exported from the CCG Public Health Management data resource, a pseudonymised database linking data from organisations providing health and social care to people across BNSSG. Descriptive statistics of sociodemographic and health-related variables for those who completed the ReSPECT process with a clinician and had a documented ReSPECT form in their notes, in addition to their ReSPECT form responses, will be compared between before, during and after first COVID-19 wave groups. Additionally, routinely collected outcomes for patients who died in our study period will be compared between those who completed the ReSPECT process with a community clinician, hospital clinician or not at all. These include emergency department attendances, emergency hospital admissions, community nurse home visits, hospice referrals, anticipatory medication prescribing, place of death and if the patient died in preferred place of death. ETHICS AND DISSEMINATION: Approval has been obtained from a National Health Service Research Ethics Committee (20/YH/0185). Findings will be disseminated to policy decision-makers, care providers and the public through scientific meetings and peer-reviewed publication.
Subject(s)
COVID-19 , Emergency Medical Services , Hospices , COVID-19/epidemiology , Humans , Observational Studies as Topic , Pandemics , Retrospective Studies , State MedicineABSTRACT
Respiratory tract infections (RTIs) are extremely common and can cause gastrointestinal tract symptoms and changes to the gut microbiota, yet these effects are poorly understood. We conducted a systematic review to evaluate the reported evidence of gut microbiome alterations in patients with a RTI compared to healthy controls (PROSPERO: CRD42019138853). We systematically searched Medline, Embase, Web of Science, Cochrane and the Clinical Trial Database for studies published between January 2015 and June 2021. Studies were eligible for inclusion if they were human cohorts describing the gut microbiome in patients with an RTI compared to healthy controls and the infection was caused by a viral or bacterial pathogen. Dual data screening and extraction with narrative synthesis was performed. We identified 1,593 articles and assessed 11 full texts for inclusion. Included studies (some nested) reported gut microbiome changes in the context of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) (n = 5), influenza (H1N1 and H7N9) (n = 2), Tuberculosis (TB) (n = 4), Community-Acquired Pneumonia CAP (n = 2) and recurrent RTIs (rRTI) (n = 1) infections. We found studies of patients with an RTI compared to controls reported a decrease in gut microbiome diversity (Shannon) of 1.45 units (95% CI, 0.15-2.50 [p, <0.0001]) and a lower abundance of taxa (p, 0.0086). Meta-analysis of the Shannon value showed considerable heterogeneity between studies (I2, 94.42). Unbiased analysis displayed as a funnel plot revealed a depletion of Lachnospiraceae, Ruminococcaceae and Ruminococcus and enrichment of Enterococcus. There was an important absence in the lack of cohort studies reporting gut microbiome changes and high heterogeneity between studies may be explained by variations in microbiome methods and confounder effects. Further human cohort studies are needed to understand RTI-induced gut microbiome changes to better understand interplay between microbes and respiratory health.
Subject(s)
Gastrointestinal Microbiome/physiology , Gastrointestinal Tract/microbiology , Respiratory Tract Infections/microbiology , Animals , Bacteria/growth & development , HumansABSTRACT
Respiratory tract infections (RTIs) are ubiquitous among children in the community. A prospective observational study was performed to evaluate the diagnostic performance and quality of at-home parent-collected (PC) nasal and saliva swab samples, compared to nurse-collected (NC) swab samples, from children with RTI symptoms. Children with RTI symptoms were swabbed at home on the same day by a parent and a nurse. We compared the performance of PC swab samples as the test with NC swab samples as the reference for the detection of respiratory pathogen gene targets by reverse transcriptase PCR, with quality assessment using a human gene. PC and NC paired nasal and saliva swab samples were collected from 91 and 92 children, respectively. Performance and interrater agreement (Cohen's κ) of PC versus NC nasal swab samples for viruses combined showed sensitivity of 91.6% (95% confidence interval [CI], 85.47 to 95.73%) and κ of 0.84 (95% CI, 0.79 to 0.88), respectively; the respective values for bacteria combined were 91.4% (95% CI, 86.85 to 94.87%) and κ of 0.85 (95% CI, 0.80 to 0.89). In saliva samples, viral and bacterial sensitivities were lower at 69.0% (95% CI, 57.47 to 79.76%) and 78.1% (95% CI, 71.60 to 83.76%), as were κ values at 0.64 (95% CI, 0.53 to 0.72) and 0.70 (95% CI, 0.65 to 0.76), respectively. Quality assessment for human biological material (18S rRNA) indicated perfect interrater agreement. At-home PC nasal swab samples performed comparably to NC swab samples, whereas PC saliva swab samples lacked sensitivity for the detection of respiratory microbes. IMPORTANCE RTIs are ubiquitous among children. Diagnosis involves a swab sample being taken by a health professional, which places a considerable burden on community health care systems, given the number of cases involved. The coronavirus disease 2019 (COVID-19) pandemic has seen an increase in the at-home self-collection of upper respiratory tract swab samples without the involvement of health professionals. It is advised that parents conduct or supervise swabbing of children. Surprisingly, few studies have addressed the quality of PC swab samples for subsequent identification of respiratory pathogens. We compared NC and PC nasal and saliva swab samples taken from the same child with RTI symptoms, for detection of respiratory pathogens. The PC nasal swab samples performed comparably to NC samples, whereas saliva swab samples lacked sensitivity for the detection of respiratory microbes. Collection of swab samples by parents would greatly reduce the burden on community nurses without reducing the effectiveness of diagnoses.
Subject(s)
Respiratory Tract Infections/diagnosis , Specimen Handling/methods , Adult , Bacteria/genetics , Bacteria/isolation & purification , Child, Preschool , Female , Health Personnel , Humans , Infant , Male , Middle Aged , Nose/microbiology , Nose/virology , Parents , Prospective Studies , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Saliva , Specimen Handling/standards , Viruses/genetics , Viruses/isolation & purification , Young AdultABSTRACT
Respiratory infections, including SARS-CoV-2, are spread via inhalation or ingestion of airborne pathogens. Airborne transmission is difficult to control, particularly indoors. Manufacturers of high efficiency particulate air (HEPA) filters claim they remove almost all small particles including airborne bacteria and viruses. This study investigates whether modern portable, commercially available air filters reduce the incidence of respiratory infections and/or remove bacteria and viruses from indoor air. We systematically searched Medline, Embase and Cochrane for studies published between January 2000 and September 2020. Studies were eligible for inclusion if they included a portable, commercially available air filter in any indoor setting including care homes, schools or healthcare settings, investigating either associations with incidence of respiratory infections or removal and/or capture of aerosolised bacteria and viruses from the air within the filters. Dual data screening and extraction with narrative synthesis. No studies were found investigating the effects of air filters on the incidence of respiratory infections. Two studies investigated bacterial capture within filters and bacterial load in indoor air. One reported higher numbers of viable bacteria in the HEPA filter than in floor dust samples. The other reported HEPA filtration combined with ultraviolet light reduced bacterial load in the air by 41% (sampling time not reported). Neither paper investigated effects on viruses. There is an important absence of evidence regarding the effectiveness of a potentially cost-efficient intervention for indoor transmission of respiratory infections, including SARS-CoV-2. Two studies provide 'proof of principle' that air filters can capture airborne bacteria in an indoor setting. Randomised controlled trials are urgently needed to investigate effects of portable HEPA filters on incidence of respiratory infections.