Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
BioMed ; 2(1):13-26, 2022.
Article in English | MDPI | ID: covidwho-1613607


We conducted a systematic survey of COVID-19 endpoint prediction literature to: (a) identify publications that include data that adhere to FAIR (findability, accessibility, interoperability, and reusability) principles and (b) develop and reuse mortality prediction models that best generalize to these datasets. The largest such cohort data we knew of was used for model development. The associated published prediction model was subjected to recursive feature elimination to find a minimal logistic regression model which had statistically and clinically indistinguishable predictive performance. This model could still not be applied to the four external validation sets that were identified, due to complete absence of needed model features in some external sets. Thus, a generalizable model (GM) was built which could be applied to all four external validation sets. An age-only model was used as a benchmark, as it is the simplest, effective, and robust predictor of mortality currently known in COVID-19 literature. While the GM surpassed the age-only model in three external cohorts, for the fourth external cohort, there was no statistically significant difference. This study underscores: (1) the paucity of FAIR data being shared by researchers despite the glut of COVID-19 prediction models and (2) the difficulty of creating any model that consistently outperforms an age-only model due to the cohort diversity of available datasets.

PLoS One ; 16(4): e0249920, 2021.
Article in English | MEDLINE | ID: covidwho-1186609


OBJECTIVE: To establish whether one can build a mortality prediction model for COVID-19 patients based solely on demographics and comorbidity data that outperforms age alone. Such a model could be a precursor to implementing smart lockdowns and vaccine distribution strategies. METHODS: The training cohort comprised 2337 COVID-19 inpatients from nine hospitals in The Netherlands. The clinical outcome was death within 21 days of being discharged. The features were derived from electronic health records collected during admission. Three feature selection methods were used: LASSO, univariate using a novel metric, and pairwise (age being half of each pair). 478 patients from Belgium were used to test the model. All modeling attempts were compared against an age-only model. RESULTS: In the training cohort, the mortality group's median age was 77 years (interquartile range = 70-83), higher than the non-mortality group (median = 65, IQR = 55-75). The incidence of former/active smokers, male gender, hypertension, diabetes, dementia, cancer, chronic obstructive pulmonary disease, chronic cardiac disease, chronic neurological disease, and chronic kidney disease was higher in the mortality group. All stated differences were statistically significant after Bonferroni correction. LASSO selected eight features, novel univariate chose five, and pairwise chose none. No model was able to surpass an age-only model in the external validation set, where age had an AUC of 0.85 and a balanced accuracy of 0.77. CONCLUSION: When applied to an external validation set, we found that an age-only mortality model outperformed all modeling attempts (curated on using three feature selection methods on 22 demographic and comorbid features.

COVID-19/mortality , Age Factors , Aged , Aged, 80 and over , Belgium/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , Cohort Studies , Communicable Disease Control , Comorbidity , Electronic Health Records , Female , Hospitalization , Humans , Male , Middle Aged , Netherlands/epidemiology , Prognosis , Risk Assessment , Risk Factors , SARS-CoV-2/isolation & purification
Eur Respir J ; 56(2)2020 08.
Article in English | MEDLINE | ID: covidwho-744960


BACKGROUND: The outbreak of coronavirus disease 2019 (COVID-19) has globally strained medical resources and caused significant mortality. OBJECTIVE: To develop and validate a machine-learning model based on clinical features for severity risk assessment and triage for COVID-19 patients at hospital admission. METHOD: 725 patients were used to train and validate the model. This included a retrospective cohort from Wuhan, China of 299 hospitalised COVID-19 patients from 23 December 2019 to 13 February 2020, and five cohorts with 426 patients from eight centres in China, Italy and Belgium from 20 February 2020 to 21 March 2020. The main outcome was the onset of severe or critical illness during hospitalisation. Model performances were quantified using the area under the receiver operating characteristic curve (AUC) and metrics derived from the confusion matrix. RESULTS: In the retrospective cohort, the median age was 50 years and 137 (45.8%) were male. In the five test cohorts, the median age was 62 years and 236 (55.4%) were male. The model was prospectively validated on five cohorts yielding AUCs ranging from 0.84 to 0.93, with accuracies ranging from 74.4% to 87.5%, sensitivities ranging from 75.0% to 96.9%, and specificities ranging from 55.0% to 88.0%, most of which performed better than the pneumonia severity index. The cut-off values of the low-, medium- and high-risk probabilities were 0.21 and 0.80. The online calculators can be found at CONCLUSION: The machine-learning model, nomogram and online calculator might be useful to access the onset of severe and critical illness among COVID-19 patients and triage at hospital admission.

Coronavirus Infections/diagnosis , Hospital Mortality/trends , Machine Learning , Pneumonia, Viral/diagnosis , Triage/methods , Adult , Age Factors , Aged , Area Under Curve , Belgium , COVID-19 , COVID-19 Testing , China , Clinical Laboratory Techniques , Cohort Studies , Coronavirus Infections/epidemiology , Decision Support Systems, Clinical , Female , Hospitalization/statistics & numerical data , Humans , Internationality , Italy , Male , Middle Aged , Pandemics/statistics & numerical data , Pneumonia, Viral/epidemiology , Predictive Value of Tests , ROC Curve , Reproducibility of Results , Retrospective Studies , Risk Assessment , Severity of Illness Index , Sex Factors , Survival Analysis