Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Am J Respir Cell Mol Biol ; 66(4): 391-401, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1775050

ABSTRACT

Asthma is associated with chronic changes in the airway epithelium, a key target of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Many epithelial changes, including goblet cell metaplasia, are driven by the type 2 cytokine IL-13, but the effects of IL-13 on SARS-CoV-2 infection are unknown. We found that IL-13 stimulation of differentiated human bronchial epithelial cells (HBECs) cultured at air-liquid interface reduced viral RNA recovered from SARS-CoV-2-infected cells and decreased double-stranded RNA, a marker of viral replication, to below the limit of detection in our assay. An intact mucus gel reduced SARS-CoV-2 infection of unstimulated cells, but neither a mucus gel nor SPDEF, which is required for goblet cell metaplasia, were required for the antiviral effects of IL-13. Bulk RNA sequencing revealed that IL-13 regulated 41 of 332 (12%) mRNAs encoding SARS-CoV-2-associated proteins that were detected in HBECs (>1.5-fold change; false discovery rate < 0.05). Although both IL-13 and IFN-α each inhibit SARS-CoV-2 infection, their transcriptional effects differed markedly. Single-cell RNA sequencing revealed cell type-specific differences in SARS-CoV-2-associated gene expression and IL-13 responses. Many IL-13-induced gene expression changes were seen in airway epithelium from individuals with type 2 asthma and chronic obstructive pulmonary disease. IL-13 effects on airway epithelial cells may protect individuals with type 2 asthma from COVID-19 and could lead to identification of novel strategies for reducing SARS-CoV-2 infection.


Subject(s)
Asthma , COVID-19 , Cells, Cultured , Epithelial Cells , Epithelium , Humans , Interleukin-13/pharmacology , SARS-CoV-2
2.
EClinicalMedicine ; 40: 101099, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1385454

ABSTRACT

BACKGROUND: Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, there has been increasing urgency to identify pathophysiological characteristics leading to severe clinical course in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human leukocyte antigen alleles (HLA) have been suggested as potential genetic host factors that affect individual immune response to SARS-CoV-2. We sought to evaluate this hypothesis by conducting a multicenter study using HLA sequencing. METHODS: We analyzed the association between COVID-19 severity and HLAs in 435 individuals from Germany (n = 135), Spain (n = 133), Switzerland (n = 20) and the United States (n = 147), who had been enrolled from March 2020 to August 2020. This study included patients older than 18 years, diagnosed with COVID-19 and representing the full spectrum of the disease. Finally, we tested our results by meta-analysing data from prior genome-wide association studies (GWAS). FINDINGS: We describe a potential association of HLA-C*04:01 with severe clinical course of COVID-19. Carriers of HLA-C*04:01 had twice the risk of intubation when infected with SARS-CoV-2 (risk ratio 1.5 [95% CI 1.1-2.1], odds ratio 3.5 [95% CI 1.9-6.6], adjusted p-value = 0.0074). These findings are based on data from four countries and corroborated by independent results from GWAS. Our findings are biologically plausible, as HLA-C*04:01 has fewer predicted bindings sites for relevant SARS-CoV-2 peptides compared to other HLA alleles. INTERPRETATION: HLA-C*04:01 carrier state is associated with severe clinical course in SARS-CoV-2. Our findings suggest that HLA class I alleles have a relevant role in immune defense against SARS-CoV-2. FUNDING: Funded by Roche Sequencing Solutions, Inc.

3.
Nat Commun ; 12(1): 5152, 2021 08 26.
Article in English | MEDLINE | ID: covidwho-1376195

ABSTRACT

The immunological features that distinguish COVID-19-associated acute respiratory distress syndrome (ARDS) from other causes of ARDS are incompletely understood. Here, we report the results of comparative lower respiratory tract transcriptional profiling of tracheal aspirate from 52 critically ill patients with ARDS from COVID-19 or from other etiologies, as well as controls without ARDS. In contrast to a "cytokine storm," we observe reduced proinflammatory gene expression in COVID-19 ARDS when compared to ARDS due to other causes. COVID-19 ARDS is characterized by a dysregulated host response with increased PTEN signaling and elevated expression of genes with non-canonical roles in inflammation and immunity. In silico analysis of gene expression identifies several candidate drugs that may modulate gene expression in COVID-19 ARDS, including dexamethasone and granulocyte colony stimulating factor. Compared to ARDS due to other types of viral pneumonia, COVID-19 is characterized by impaired interferon-stimulated gene (ISG) expression. The relationship between SARS-CoV-2 viral load and expression of ISGs is decoupled in patients with COVID-19 ARDS when compared to patients with mild COVID-19. In summary, assessment of host gene expression in the lower airways of patients reveals distinct immunological features of COVID-19 ARDS.


Subject(s)
COVID-19/genetics , RNA/genetics , Respiratory Distress Syndrome/genetics , Trachea/immunology , Adult , Aged , Aged, 80 and over , COVID-19/immunology , COVID-19/virology , Case-Control Studies , Cohort Studies , Critical Illness , Cytokines/genetics , Cytokines/immunology , Female , Gene Expression Profiling , Humans , Male , Middle Aged , RNA/metabolism , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/virology , SARS-CoV-2/physiology , Sequence Analysis, RNA
4.
Sci Transl Med ; 13(612): eabh2624, 2021 Sep 22.
Article in English | MEDLINE | ID: covidwho-1371845

ABSTRACT

Neutralizing autoantibodies against type I interferons (IFNs) have been found in some patients with critical coronavirus disease 2019 (COVID-19), the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the prevalence of these antibodies, their longitudinal dynamics across the disease severity scale, and their functional effects on circulating leukocytes remain unknown. Here, in 284 patients with COVID-19, we found type I IFN­specific autoantibodies in peripheral blood samples from 19% of patients with critical disease and 6% of patients with severe disease. We found no type I IFN autoantibodies in individuals with moderate disease. Longitudinal profiling of over 600,000 peripheral blood mononuclear cells using multiplexed single-cell epitope and transcriptome sequencing from 54 patients with COVID-19 and 26 non­COVID-19 controls revealed a lack of type I IFN­stimulated gene (ISG-I) responses in myeloid cells from patients with critical disease. This was especially evident in dendritic cell populations isolated from patients with critical disease producing type I IFN­specific autoantibodies. Moreover, we found elevated expression of the inhibitory receptor leukocyte-associated immunoglobulin-like receptor 1 (LAIR1) on the surface of monocytes isolated from patients with critical disease early in the disease course. LAIR1 expression is inversely correlated with ISG-I expression response in patients with COVID-19 but is not expressed in healthy controls. The deficient ISG-I response observed in patients with critical COVID-19 with and without type I IFN­specific autoantibodies supports a unifying model for disease pathogenesis involving ISG-I suppression through convergent mechanisms.


Subject(s)
Autoantibodies , COVID-19 , Interferon Type I , Autoantibodies/immunology , COVID-19/immunology , Humans , Interferon Type I/immunology
5.
Nature ; 591(7848): 124-130, 2021 03.
Article in English | MEDLINE | ID: covidwho-1368933

ABSTRACT

Although infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has pleiotropic and systemic effects in some individuals1-3, many others experience milder symptoms. Here, to gain a more comprehensive understanding of the distinction between severe and mild phenotypes in the pathology of coronavirus disease 2019 (COVID-19) and its origins, we performed a whole-blood-preserving single-cell analysis protocol to integrate contributions from all major immune cell types of the blood-including neutrophils, monocytes, platelets, lymphocytes and the contents of the serum. Patients with mild COVID-19 exhibit a coordinated pattern of expression of interferon-stimulated genes (ISGs)3 across every cell population, whereas these ISG-expressing cells are systemically absent in patients with severe disease. Paradoxically, individuals with severe COVID-19 produce very high titres of anti-SARS-CoV-2 antibodies and have a lower viral load compared to individuals with mild disease. Examination of the serum from patients with severe COVID-19 shows that these patients uniquely produce antibodies that functionally block the production of the ISG-expressing cells associated with mild disease, by activating conserved signalling circuits that dampen cellular responses to interferons. Overzealous antibody responses pit the immune system against itself in many patients with COVID-19, and perhaps also in individuals with other viral infections. Our findings reveal potential targets for immunotherapies in patients with severe COVID-19 to re-engage viral defence.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/physiopathology , Interferons/antagonists & inhibitors , Interferons/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Antibodies, Viral/blood , Antibody Formation , Base Sequence , COVID-19/blood , COVID-19/virology , Female , Humans , Immunoglobulin G/immunology , Interferons/metabolism , Male , Neutrophils/immunology , Neutrophils/pathology , Protein Domains , Receptor, Interferon alpha-beta/antagonists & inhibitors , Receptor, Interferon alpha-beta/immunology , Receptor, Interferon alpha-beta/metabolism , Receptors, IgG/immunology , Single-Cell Analysis , Viral Load/immunology
7.
Genome Med ; 13(1): 66, 2021 04 21.
Article in English | MEDLINE | ID: covidwho-1197350

ABSTRACT

BACKGROUND: The large airway epithelial barrier provides one of the first lines of defense against respiratory viruses, including SARS-CoV-2 that causes COVID-19. Substantial inter-individual variability in individual disease courses is hypothesized to be partially mediated by the differential regulation of the genes that interact with the SARS-CoV-2 virus or are involved in the subsequent host response. Here, we comprehensively investigated non-genetic and genetic factors influencing COVID-19-relevant bronchial epithelial gene expression. METHODS: We analyzed RNA-sequencing data from bronchial epithelial brushings obtained from uninfected individuals. We related ACE2 gene expression to host and environmental factors in the SPIROMICS cohort of smokers with and without chronic obstructive pulmonary disease (COPD) and replicated these associations in two asthma cohorts, SARP and MAST. To identify airway biology beyond ACE2 binding that may contribute to increased susceptibility, we used gene set enrichment analyses to determine if gene expression changes indicative of a suppressed airway immune response observed early in SARS-CoV-2 infection are also observed in association with host factors. To identify host genetic variants affecting COVID-19 susceptibility in SPIROMICS, we performed expression quantitative trait (eQTL) mapping and investigated the phenotypic associations of the eQTL variants. RESULTS: We found that ACE2 expression was higher in relation to active smoking, obesity, and hypertension that are known risk factors of COVID-19 severity, while an association with interferon-related inflammation was driven by the truncated, non-binding ACE2 isoform. We discovered that expression patterns of a suppressed airway immune response to early SARS-CoV-2 infection, compared to other viruses, are similar to patterns associated with obesity, hypertension, and cardiovascular disease, which may thus contribute to a COVID-19-susceptible airway environment. eQTL mapping identified regulatory variants for genes implicated in COVID-19, some of which had pheWAS evidence for their potential role in respiratory infections. CONCLUSIONS: These data provide evidence that clinically relevant variation in the expression of COVID-19-related genes is associated with host factors, environmental exposures, and likely host genetic variation.


Subject(s)
Bronchi , COVID-19/genetics , Respiratory Mucosa , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/genetics , Asthma/genetics , COVID-19/immunology , Cardiovascular Diseases/genetics , Cardiovascular Diseases/immunology , Gene Expression , Genetic Variation , Humans , Middle Aged , Obesity/genetics , Obesity/immunology , Pulmonary Disease, Chronic Obstructive/genetics , Quantitative Trait Loci , Risk Factors , Smoking/genetics
8.
Res Sq ; 2020 Oct 28.
Article in English | MEDLINE | ID: covidwho-903184

ABSTRACT

While SARS-CoV-2 infection has pleiotropic and systemic effects in some patients, many others experience milder symptoms. We sought a holistic understanding of the severe/mild distinction in COVID-19 pathology, and its origins. We performed a wholeblood preserving single-cell analysis protocol to integrate contributions from all major cell types including neutrophils, monocytes, platelets, lymphocytes and the contents of serum. Patients with mild COVID-19 disease display a coordinated pattern of interferonstimulated gene (ISG) expression across every cell population and these cells are systemically absent in patients with severe disease. Severe COVID-19 patients also paradoxically produce very high anti-SARS-CoV-2 antibody titers and have lower viral load as compared to mild disease. Examination of the serum from severe patients demonstrates that they uniquely produce antibodies with multiple patterns of specificity against interferon-stimulated cells and that those antibodies functionally block the production of the mild disease-associated ISG-expressing cells. Overzealous and autodirected antibody responses pit the immune system against itself in many COVID-19 patients and this defines targets for immunotherapies to allow immune systems to provide viral defense.

9.
Am J Respir Crit Care Med ; 202(1): 83-90, 2020 07 01.
Article in English | MEDLINE | ID: covidwho-155109

ABSTRACT

Rationale: Coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). ACE2 (angiotensin-converting enzyme 2), and TMPRSS2 (transmembrane protease serine 2) mediate viral infection of host cells. We reasoned that differences in ACE2 or TMPRSS2 gene expression in sputum cells among patients with asthma may identify subgroups at risk for COVID-19 morbidity.Objectives: To determine the relationship between demographic features and sputum ACE2 and TMPRSS2 gene expression in asthma.Methods: We analyzed gene expression for ACE2 and TMPRSS2, and for ICAM-1 (intercellular adhesion molecule 1) (rhinovirus receptor as a comparator) in sputum cells from 330 participants in SARP-3 (Severe Asthma Research Program-3) and 79 healthy control subjects.Measurements and Main Results: Gene expression of ACE2 was lower than TMPRSS2, and expression levels of both genes were similar in asthma and health. Among patients with asthma, male sex, African American race, and history of diabetes mellitus were associated with higher expression of ACE2 and TMPRSS2. Use of inhaled corticosteroids (ICS) was associated with lower expression of ACE2 and TMPRSS2, but treatment with triamcinolone acetonide did not decrease expression of either gene. These findings differed from those for ICAM-1, where gene expression was increased in asthma and less consistent differences were observed related to sex, race, and use of ICS.Conclusions: Higher expression of ACE2 and TMPRSS2 in males, African Americans, and patients with diabetes mellitus provides rationale for monitoring these asthma subgroups for poor COVID-19 outcomes. The lower expression of ACE2 and TMPRSS2 with ICS use warrants prospective study of ICS use as a predictor of decreased susceptibility to SARS-CoV-2 infection and decreased COVID-19 morbidity.


Subject(s)
Asthma , Coronavirus Infections , Coronavirus , Pandemics , Pneumonia, Viral , Adrenal Cortex Hormones , Betacoronavirus , COVID-19 , Demography , Humans , Male , Prospective Studies , SARS-CoV-2 , Sputum
SELECTION OF CITATIONS
SEARCH DETAIL