Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Nat Med ; 28(3): 496-503, 2022 03.
Article in English | MEDLINE | ID: covidwho-1655606

ABSTRACT

Infection-neutralizing antibody responses after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or coronavirus disease 2019 vaccination are an essential component of antiviral immunity. Antibody-mediated protection is challenged by the emergence of SARS-CoV-2 variants of concern (VoCs) with immune escape properties, such as omicron (B.1.1.529), which is rapidly spreading worldwide. Here we report neutralizing antibody dynamics in a longitudinal cohort of coronavirus disease 2019 convalescent and infection-naive individuals vaccinated with mRNA BNT162b2 by quantifying SARS-CoV-2 spike protein antibodies and determining their avidity and neutralization capacity in serum. Using live-virus neutralization assays, we show that a superior infection-neutralizing capacity against all VoCs, including omicron, developed after either two vaccinations in convalescents or a third vaccination or breakthrough infection of twice-vaccinated, naive individuals. These three consecutive spike antigen exposures resulted in an increasing neutralization capacity per anti-spike antibody unit and were paralleled by stepwise increases in antibody avidity. We conclude that an infection-plus-vaccination-induced hybrid immunity or a triple immunization can induce high-quality antibodies with superior neutralization capacity against VoCs, including omicron.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , Humans , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination
2.
Med Microbiol Immunol ; 211(1): 71-77, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1640849

ABSTRACT

On November 26, 2021, the World Health Organization classified B.1.1.529 as a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of concern (VoC), named omicron. Spike-gene dropouts in conventional SARS-CoV-2 PCR systems have been reported over the last weeks as indirect diagnostic evidence for the identification of omicron. Here, we report the combination of PCRs specific for heavily mutated sites in the spike gene and nanopore-based full-length genome sequencing for the rapid and sensitive identification of the first four COVID-19 patients diagnosed in Germany to be infected with omicron on November 28, 2021. This study will assist the unambiguous laboratory-based diagnosis and global surveillance for this highly contagious VoC with an unprecedented degree of humoral immune escape. Moreover, we propose that specialized diagnostic laboratories should continuously update their assays for variant-specific PCRs in the spike gene of SARS-CoV-2 to readily detect and diagnose emerging variants of interest and VoCs. The combination with established nanopore sequencing procedures allows both the rapid confirmation by whole genome sequencing as well as the sensitive identification of newly emerging variants of this pandemic ß-coronavirus in years to come.


Subject(s)
COVID-19 , Nanopore Sequencing , Humans , Mutation , Polymerase Chain Reaction , SARS-CoV-2
3.
Cell Rep ; 37(13): 110169, 2021 12 28.
Article in English | MEDLINE | ID: covidwho-1616407

ABSTRACT

The importance of pre-existing immune responses to seasonal endemic coronaviruses (HCoVs) for the susceptibility to SARS-CoV-2 infection and the course of COVID-19 is the subject of an ongoing scientific debate. Recent studies postulate that immune responses to previous HCoV infections can either have a slightly protective or no effect on SARS-CoV-2 pathogenesis and, consequently, be neglected for COVID-19 risk stratification. Challenging this notion, we provide evidence that pre-existing, anti-nucleocapsid antibodies against endemic α-coronaviruses and S2 domain-specific anti-spike antibodies against ß-coronavirus HCoV-OC43 are elevated in patients with COVID-19 compared to pre-pandemic donors. This finding is particularly pronounced in males and in critically ill patients. Longitudinal evaluation reveals that antibody cross-reactivity or polyclonal stimulation by SARS-CoV-2 infection are unlikely to be confounders. Thus, specific pre-existing immunity to seasonal coronaviruses may increase susceptibility to SARS-CoV-2 and predispose individuals to an adverse COVID-19 outcome, guiding risk management and supporting the development of universal coronavirus vaccines.


Subject(s)
COVID-19/immunology , Coronavirus/immunology , SARS-CoV-2/immunology , Adult , Antibodies/immunology , Antibodies, Viral/immunology , COVID-19/etiology , Coronavirus Infections/immunology , Coronavirus OC43, Human/immunology , Coronavirus OC43, Human/pathogenicity , Cross Reactions/immunology , Female , Germany , Humans , Immunity, Humoral/immunology , Immunoglobulin G/immunology , Longitudinal Studies , Male , Middle Aged , Pandemics , SARS-CoV-2/pathogenicity , Seasons , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology
4.
iScience ; 25(1): 103659, 2022 Jan 21.
Article in English | MEDLINE | ID: covidwho-1587464

ABSTRACT

Although some COVID-19 patients maintain SARS-CoV-2-specific serum immunoglobulin G (IgG) for more than 6 months postinfection, others eventually lose IgG levels. We assessed the persistence of SARS-CoV-2-specific B cells in 17 patients, 5 of whom had lost specific IgGs after 5-8 months. Differentiation of blood-derived B cells in vitro revealed persistent SARS-CoV-2-specific IgG B cells in all patients, whereas IgA B cells were maintained in 11. Antibodies derived from cultured B cells blocked binding of viral receptor-binding domain (RBD) to the cellular receptor ACE-2, had neutralizing activity to authentic virus, and recognized the RBD of the variant of concern Alpha similarly to the wild type, whereas reactivity to Beta and Gamma were decreased. Thus, differentiation of memory B cells could be more sensitive for detecting previous infection than measuring serum antibodies. Understanding the persistence of SARS-CoV-2-specific B cells even in the absence of specific serum IgG will help to promote long-term immunity.

5.
Cell reports ; 2021.
Article in English | EuropePMC | ID: covidwho-1565013

ABSTRACT

Wratil et al. find specific antibody responses against seasonal human coronaviruses, which cause the common cold, to be elevated in patients with COVID-19 compared to pre-pandemic blood donors. This specific immunity is likely pre-existing in patients and increases their susceptibility to SARS-CoV-2 and severity of COVID-19.

6.
Clin Infect Dis ; 73(9): e3055-e3065, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1501051

ABSTRACT

BACKGROUND: High infection rates among healthcare personnel in an uncontained pandemic can paralyze health systems due to staff shortages. Risk constellations and rates of seroconversion for healthcare workers (HCWs) during the first wave of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic are still largely unclear. METHODS: Healthcare personnel (n = 300) on different organizational units in the LMU Munich University Hospital were included and followed in this prospective longitudinal study from 24 March until 7 July 2020. Participants were monitored in intervals of 2 to 6 weeks using different antibody assays for serological testing and questionnaires to evaluate risk contacts. In a subgroup of infected participants, we obtained nasopharyngeal swabs to perform whole-genome sequencing for outbreak characterization. RESULTS: HCWs involved in patient care on dedicated coronavirus disease 2019 (COVID-19) wards or on regular non-COVID-19 wards showed a higher rate of SARS-CoV-2 seroconversion than staff in the emergency department and non-frontline personnel. The landscape of risk contacts in these units was dynamic, with a decrease in unprotected risk contacts in the emergency department and an increase on non-COVID-19 wards. Both intensity and number of risk contacts were associated with higher rates of seroconversion. On regular wards, staff infections tended to occur in clusters, while infections on COVID-19 wards were less frequent and apparently independent of each other. CONCLUSIONS: Risk of SARS-CoV-2 infection for frontline HCWs was increased during the first pandemic wave in southern Germany. Stringent measures for infection control are essential to protect all patient-facing staff during the ongoing pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Germany/epidemiology , Health Personnel , Hospitals, University , Humans , Longitudinal Studies , Pandemics , Prospective Studies
7.
PLoS Pathog ; 17(10): e1009742, 2021 10.
Article in English | MEDLINE | ID: covidwho-1456098

ABSTRACT

Disease manifestations in COVID-19 range from mild to severe illness associated with a dysregulated innate immune response. Alterations in function and regeneration of dendritic cells (DCs) and monocytes may contribute to immunopathology and influence adaptive immune responses in COVID-19 patients. We analyzed circulating DC and monocyte subsets in 65 hospitalized COVID-19 patients with mild/moderate or severe disease from acute illness to recovery and in healthy controls. Persisting reduction of all DC subpopulations was accompanied by an expansion of proliferating Lineage-HLADR+ cells lacking DC markers. Increased frequency of CD163+ CD14+ cells within the recently discovered DC3 subpopulation in patients with more severe disease was associated with systemic inflammation, activated T follicular helper cells, and antibody-secreting cells. Persistent downregulation of CD86 and upregulation of programmed death-ligand 1 (PD-L1) in conventional DCs (cDC2 and DC3) and classical monocytes associated with a reduced capacity to stimulate naïve CD4+ T cells correlated with disease severity. Long-lasting depletion and functional impairment of DCs and monocytes may have consequences for susceptibility to secondary infections and therapy of COVID-19 patients.


Subject(s)
COVID-19/immunology , Dendritic Cells/immunology , Regeneration/immunology , SARS-CoV-2/immunology , Adult , Antigens, CD/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , COVID-19/pathology , Dendritic Cells/pathology , Female , Humans , Male , Middle Aged , Monocytes/immunology , Monocytes/pathology , Programmed Cell Death 1 Receptor/immunology
8.
Infection ; 50(2): 381-394, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1351389

ABSTRACT

PURPOSE: To determine risk factors for coronavirus disease 2019 (COVID-19) in healthcare workers (HCWs), characterize symptoms, and evaluate preventive measures against SARS-CoV-2 spread in hospitals. METHODS: In a cross-sectional study conducted between May 27 and August 12, 2020, after the first wave of the COVID-19 pandemic, we obtained serological, epidemiological, occupational as well as COVID-19-related data at a quaternary care, multicenter hospital in Munich, Germany. RESULTS: 7554 HCWs participated, 2.2% of whom tested positive for anti-SARS-CoV-2 antibodies. Multivariate analysis revealed increased COVID-19 risk for nurses (3.1% seropositivity, 95% CI 2.5-3.9%, p = 0.012), staff working on COVID-19 units (4.6% seropositivity, 95% CI 3.2-6.5%, p = 0.032), males (2.4% seropositivity, 95% CI 1.8-3.2%, p = 0.019), and HCWs reporting high-risk exposures to infected patients (5.5% seropositivity, 95% CI 4.0-7.5%, p = 0.0022) or outside of work (12.0% seropositivity, 95% CI 8.0-17.4%, p < 0.0001). Smoking was a protective factor (1.1% seropositivity, 95% CI 0.7-1.8% p = 0.00018) and the symptom taste disorder was strongly associated with COVID-19 (29.8% seropositivity, 95% CI 24.3-35.8%, p < 0.0001). An unbiased decision tree identified subgroups with different risk profiles. Working from home as a preventive measure did not protect against SARS-CoV-2 infection. A PCR-testing strategy focused on symptoms and high-risk exposures detected all larger COVID-19 outbreaks. CONCLUSION: Awareness of the identified COVID-19 risk factors and successful surveillance strategies are key to protecting HCWs against SARS-CoV-2, especially in settings with limited vaccination capacities or reduced vaccine efficacy.


Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , Cross-Sectional Studies , Health Personnel , Humans , Male , Pandemics/prevention & control , Risk Factors , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL