Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Frontiers in microbiology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1872008

ABSTRACT

Background Coronavirus disease 2019 (COVID-19) is a global pandemic. Previous studies have reported dyslipidemia in patients with COVID-19. Herein, we conducted a retrospective study and a bioinformatics analysis to evaluate the essential data of the lipid profile as well as the possible mechanism in patients with COVID-19. Methods First of all, the retrospective study included three cohorts: patients with COVID-19, a healthy population, and patients with chronic obstructive pulmonary disease (COPD). For each subject, serum lipid profiles in the biochemical data were compared, including triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C). Furthermore, bioinformatics analyses were performed for exploring the biological or immunological mechanisms. Results In line with the biochemical data of the three cohorts, the statistical result displayed that patients with COVID-19 were more likely to have lower levels of TC and HDL-C as compared with healthy individuals. The differential proteins associated with COVID-19 are involved in the lipid pathway and can target and regulate cytokines and immune cells. Additionally, a heatmap revealed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections were possibly involved in lipid metabolic reprogramming. The viral proteins, such as spike (S) and non-structural protein 2 (Nsp2) of SARS-CoV-2, may be involved in metabolic reprogramming. Conclusion The metabolic reprogramming after SARS-CoV-2 infections is probably associated with the immune and clinical phenotype of patients. Hence, metabolic reprogramming may be targeted for developing antivirals against COVID-19.

3.
Signal Transduct Target Ther ; 7(1): 138, 2022 04 26.
Article in English | MEDLINE | ID: covidwho-1815515

ABSTRACT

The current pandemic of COVID-19 is fueled by more infectious emergent Omicron variants. Ongoing concerns of emergent variants include possible recombinants, as genome recombination is an important evolutionary mechanism for the emergence and re-emergence of human viral pathogens. In this study, we identified diverse recombination events between two Omicron major subvariants (BA.1 and BA.2) and other variants of concern (VOCs) and variants of interest (VOIs), suggesting that co-infection and subsequent genome recombination play important roles in the ongoing evolution of SARS-CoV-2. Through scanning high-quality completed Omicron spike gene sequences, 18 core mutations of BA.1 (frequency >99%) and 27 core mutations of BA.2 (nine more than BA.1) were identified, of which 15 are specific to Omicron. BA.1 subvariants share nine common amino acid mutations (three more than BA.2) in the spike protein with most VOCs, suggesting a possible recombination origin of Omicron from these VOCs. There are three more Alpha-related mutations in BA.1 than BA.2, and BA.1 is phylogenetically closer to Alpha than other variants. Revertant mutations are found in some dominant mutations (frequency >95%) in the BA.1. Most notably, multiple characteristic amino acid mutations in the Delta spike protein have been also identified in the "Deltacron"-like Omicron Variants isolated since November 11, 2021 in South Africa, which implies the recombination events occurring between the Omicron and Delta variants. Monitoring the evolving SARS-CoV-2 genomes especially for recombination is critically important for recognition of abrupt changes to viral attributes including its epitopes which may call for vaccine modifications.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Amino Acids , COVID-19/virology , Genome, Viral/genetics , Humans , Mutation/genetics , Recombination, Genetic/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
4.
Comput Struct Biotechnol J ; 20: 824-837, 2022.
Article in English | MEDLINE | ID: covidwho-1778073

ABSTRACT

Since Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was identified in late 2019, the coronavirus disease 2019 (COVID-19) pandemic has challenged public health around the world. Currently, there is an urgent need to explore antiviral therapeutic targets and effective clinical drugs. In this study, we systematically summarized two main therapeutic strategies against COVID-19, namely drugs targeting the SARS-CoV-2 life cycle and SARS-CoV-2-induced inflammation in host cells. The development of above two strategies is implemented by repurposing drugs and exploring potential targets. A comprehensive summary of promising drugs, especially cytokine inhibitors, and traditional Chinese medicine (TCM), provides recommendations for clinicians as evidence-based medicine in the actual clinical COVID-19 treatment. Considering the emerging SARS-CoV-2 variants greatly impact the effectiveness of drugs and vaccines, we reviewed the appearance and details of SARS-CoV-2 variants for further perspectives in drug design, which brings updating clues to develop therapeutical agents against the variants. Based on this, the development of broadly antiviral drugs, combined with immunomodulatory, or holistic therapy in the host, is prior to being considered for therapeutic interventions on mutant strains of SARS-CoV-2. Therefore, it is highly acclaimed the requirements of the concerted efforts from multi-disciplinary basic studies and clinical trials, which improves the accurate treatment of COVID-19 and optimizes the contingency measures to emerging SARS-CoV-2 variants.

5.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-330278

ABSTRACT

The current pandemic of COVID-19 is fueled by more infectious emergent Omicron variants. Ongoing concerns of emergent variants include possible recombinants, as genome recombination is an important evolutionary mechanism for the emergence and re-emergence of human viral pathogens. Although recombination events among SARS-CoV-1 and MERS-CoV were well-documented, it has been difficult to detect the recombination signatures in SARS-CoV-2 variants due to their high degree of sequence similarity. In this study, we identified diverse recombination events between two Omicron major subvariants (BA.1 and BA.2) and other variants of concern (VOCs) and variants of interest (VOIs), suggesting that co-infection and subsequent genome recombination play important roles in the ongoing evolution of SARS-CoV-2. Through scanning high-quality completed Omicron spike gene sequences, eighteen core mutations of BA.1 variants (frequency >99%) were identified (eight in NTD, five near the S1/S2 cleavage site, and five in S2). BA.2 variants share three additional amino acid deletions with the Alpha variants. BA.1 subvariants share nine common amino acid mutations (three more than BA.2) in the spike protein with most VOCs, suggesting a possible recombination origin of Omicron from these VOCs. There are three more Alpha-related mutations (del69-70, del144) in BA.1 than BA.2, and therefore BA.1 may be phylogenetically closer to the Alpha variant. Revertant mutations are found in some dominant mutations (frequency >95%) in the BA.1 subvariant. Most notably, multiple additional amino acid mutations in the Delta spike protein were also identified in the recently emerged Omicron isolates, which implied possible recombination events occurred between the Omicron and Delta variants during the on-going pandemic. Monitoring the evolving SARS-CoV-2 genomes especially for recombination is critically important for recognition of abrupt changes to viral attributes including its epitopes which may call for vaccine modifications.

6.
Chem Eng Sci ; 251: 117430, 2022 Apr 06.
Article in English | MEDLINE | ID: covidwho-1704061

ABSTRACT

Loop-mediated isothermal amplification (LAMP) is widely used in detection of pathogenic microorganisms including SARS-CoV-2. However, the performance of LAMP assay needs further exploration in the emerging SARS-CoV-2 variants test. Here, we design serials of primers and select an optimal set for LAMP-based on SARS-CoV-2 N gene for a robust and visual assay in SARS-CoV-2 diagnosis. The limit of detectable template reaches 10 copies of N gene per 25 µL reaction at isothermal 58℃ within 40 min. Importantly, the primers for LAMP assay locate at 12 to 213 nt of N gene, a highly conservative region, which serves as a compatible test in emerging SARS-CoV-2 variants. Comparison to a commercial qPCR assay, this LAMP assay exerts the high viability in diagnosis of 41 clinical samples. Our study optimizes an advantageous LAMP assay for colorimetric detection of SARS-CoV-2 and emerging variants, which is hopeful to be a promising test in COVID-19 surveillance.

7.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-318614

ABSTRACT

Excessive inflammatory responses induced upon SARS-CoV-2 infection interlocks with severe symptoms and acute lung injury in patients with Severe Coronavirus Disease 2019 (COVID-19). Revealing the mechanism underlying the control of SARS-CoV-2-triggered immune-inflammatory responses would help us to understand the pathological process and guide clinical treatment. However, the effect of the NLRP3 inflammasome on regulating SARS-CoV-2-induced inflammatory responses has not been reported. Here, we revealed a distinct mechanism by which SARS-CoV-2 nucleocapsid (N) protein promotes the NLRP3 inflammasome activation to induce hyperinflammation. We demonstrated that N protein facilitates the maturation of proinflammatory cytokines IL-1β and IL-6 and induces proinflammatory responses in cultured cells and mice tissues. In team of molecular mechanism, N protein interacts directly with NLRP3 protein, promotes the binding of NLRP3 with ASC, and facilitates the assemble of the inflammasome complex. More importantly, N protein aggravates lung injury, accelerated death in sepsis and acute inflammation mouse models, and promotes IL-1β and IL-6 activation in mice. Notably, N-induced lung injury and cytokine production were blocked by Ac-YVAD-cmk, an inhibitor of the NLRP3 inflammasome. Therefore, this study revealed a distinct mechanism by which SARS-CoV-2 N protein promotes the NLRP3 inflammasome activation and induces excessive inflammatory responses.

8.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-325428

ABSTRACT

Background: The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic has affected almost every country. Interleukin-6 (IL-6), a cytokine secreted by CD4+ T cell, has been shown to be a reliable marker of disease severity and a useful parameter for monitoring progression of coronavirus disease-2019 (COVID-19). However its value as a predictor of severe disease has not been assessed. Methods: : A total of 160 laboratory-confirmed COVID-19 patients admitted to two hospitals were enrolledand separated into two groups according to whether or not they progressed to develop severe illness. Demographic and clinical characteristics at admission were compared between the groups. Results: : Patients who developed severe COVID-19 had significantly higher baseline IL-6 levels than patients who had mild disease course in hospital ( P < 0.001). Patients were further grouped according to quartiles of IL-6 level. The cumulative incidence of severe illnesswas significantly higher in the third and fourth quartiles groups than in the first quartile group (55% vs. 15% and 80% vs. 15%, respectively;both P < 0.001). In multivariate logistic regression analysis, the risk for developing severe disease was markedly higher in the highest IL-6 quartile than in the lowest quartile (odds ratio: 14.95;95% confidence interval: 3.65–61.30;P < 0.001). Receiver operating characteristic curve analysis of potential predictive variables showed the area under the curve to be largest for baseline IL-6, with the value of 5.20 pg/mL having the best balance of sensitivity and specificity for predicting risk of severe COVID-19. Conclusion: Serum baseline IL-6 appears to be a reliable predictor of risk of severe COVID-19. Early intervention may be advisable in patients with serum IL-6 levels >5.20 pg/mL, even if initial symptoms are mild.

9.
Frontiers in immunology ; 12, 2021.
Article in English | EuropePMC | ID: covidwho-1652330

ABSTRACT

SARS-CoV-2 infections present a tremendous threat to public health. Safe and efficacious vaccines are the most effective means in preventing the infections. A variety of vaccines have demonstrated excellent efficacy and safety around the globe. Yet, development of alternative forms of vaccines remains beneficial, particularly those with simpler production processes, less stringent storage conditions, and the capability of being used in heterologous prime/boost regimens which have shown improved efficacy against many diseases. Here we reported a novel DNA vaccine comprised of the SARS-CoV-2 spike protein fused with CD40 ligand (CD40L) serving as both a targeting ligand and molecular adjuvant. A single intramuscular injection in Syrian hamsters induced significant neutralizing antibodies 3-weeks after vaccination, with a boost substantially improving immune responses. Moreover, the vaccine also reduced weight loss and suppressed viral replication in the lungs and nasal turbinates of challenged animals. Finally, the incorporation of CD40L into the DNA vaccine was shown to reduce lung pathology more effectively than the DNA vaccine devoid of CD40L. These results collectively indicate that this DNA vaccine candidate could be further explored because of its efficacy and known safety profile.

10.
Adv Sci (Weinh) ; 9(3): e2103248, 2022 01.
Article in English | MEDLINE | ID: covidwho-1527412

ABSTRACT

COVID-19 is infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and can cause severe multiple organ injury and death. Kidney is one of major target organs of COVID-19 and acute kidney injury (AKI) is common in critically ill COVID-19 patients. However, mechanisms through which COVID-19 causes AKI remain largely unknown and treatment remains unspecific and ineffective. Here, the authors report that normal kidney-specifically overexpressing SARS-CoV-2 N develops AKI, which worsens in mice under ischemic condition. Mechanistically, it is uncovered that SARS-CoV-2 N-induced AKI is Smad3-dependent as SARS-CoV-2 N protein can interact with Smad3 and enhance TGF-ß/Smad3 signaling to cause tubular epithelial cell death and AKI via the G1 cell cycle arrest mechanism. This is further confirmed in Smad3 knockout mice and cells in which deletion of Smad3 protects against SARS-CoV-2 N protein-induced cell death and AKI in vivo and in vitro. Most significantly, it is also found that targeting Smad3 with a Smad3 pharmacological inhibitor is able to inhibit SARS-CoV-2 N-induced AKI. In conclusion, the authors identify that SARS-CoV-2 N protein is a key mediator for AKI and induces AKI via the Smad3-dependent G1 cell cycle arrest mechanism. Targeting Smad3 may represent as a novel therapy for COVID-19-asscoaited AKI.


Subject(s)
Acute Kidney Injury , COVID-19 , Coronavirus Nucleocapsid Proteins , G1 Phase Cell Cycle Checkpoints , SARS-CoV-2 , Smad3 Protein , Acute Kidney Injury/genetics , Acute Kidney Injury/metabolism , Acute Kidney Injury/virology , Animals , COVID-19/genetics , COVID-19/metabolism , Cell Line , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/metabolism , Disease Models, Animal , HEK293 Cells , Humans , Mice , Mice, Knockout , Phosphoproteins/genetics , Phosphoproteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Smad3 Protein/genetics , Smad3 Protein/metabolism
11.
Non-conventional in English | [Unspecified Source], Grey literature | ID: grc-750632

ABSTRACT

Background: A recent outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2), which began in Wuhan, China, with a high level of human-to-human transmission has been reported. There are limited data available on Coronavirus Disease 2019 (COVID-19) patients with hematological malignancies with more than 60 days of follow-up. This study describes the clinical characteristics, including multiple recurrences of COVID-19, in a patient with chronic lymphocytic leukemia (CLL) during 69 days of follow-up. Case Presentation: A 72-year-old female was admitted to hospital isolation after being infected with COVID-19 as part of a family cluster on January 30, 2020. Apart from SARS-Cov-2 virus infection, laboratory results revealed lymphocytosis of uncertain etiology and abnormal distribution of T lymphocytes. On blood smears, small blue lymphocytes with scant cytoplasm were observed, and the presence of high levels of circulating clonal B cells was also demonstrated by flow cytometry. The patient was diagnosed with COVID-19 and CLL. Among her family members, she had the highest viral loads and the fastest progression on lung injury and developed severe pneumonia. Serological results showed she had both 2019-nCoV-specific IgM and IgG antibodies;however, only IgG antibodies were detected in her husband's plasma. Results: A combination regimen of antiviral therapy and high-dose intravenous immunoglobulin (IVIG) in the early stage seemed to be effective for treating CLL and SARS-Cov-2 infection. Because of the low humoral immune response, the CLL patient could not effectively clear the SARS-Cov-2 infection and suffered from recurrence twice during the 69-day follow-up. Conclusion: In CLL, a neoplastic antigen-specific B-cell clone proliferates, and the progeny cells accumulate and outgrow other B cells, leading to immune deficiency. Considering the low humoral immune response and ineffective clearance of SARS-Cov-2 in CLL patients, the follow-up and home quarantine period should be extended. We need further studies to clarify suspending or continuing CLL therapy during COVID infection. For those patients who are prone to progression to severe disease, administering humoral immunity therapies can help to prevent disease progression and quickly meet the cure criteria.

12.
J Virol ; 95(16): e0061721, 2021 07 26.
Article in English | MEDLINE | ID: covidwho-1486509

ABSTRACT

The current pandemic of COVID-19 is caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 spike protein receptor-binding domain (RBD) is the critical determinant of viral tropism and infectivity. To investigate whether naturally occurring RBD mutations during the early transmission phase have altered the receptor binding affinity and infectivity, we first analyzed in silico the binding dynamics between SARS-CoV-2 RBD mutants and the human angiotensin-converting enzyme 2 (ACE2) receptor. Among 32,123 genomes of SARS-CoV-2 isolates (December 2019 through March 2020), 302 nonsynonymous RBD mutants were identified and clustered into 96 mutant types. The six dominant mutations were analyzed applying molecular dynamics simulations (MDS). The mutant type V367F continuously circulating worldwide displayed higher binding affinity to human ACE2 due to the enhanced structural stabilization of the RBD beta-sheet scaffold. The MDS also indicated that it would be difficult for bat SARS-like CoV to infect humans. However, the pangolin CoV is potentially infectious to humans. The increased infectivity of V367 mutants was further validated by performing receptor-ligand binding enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance, and pseudotyped virus assays. Phylogenetic analysis of the genomes of V367F mutants showed that during the early transmission phase, most V367F mutants clustered more closely with the SARS-CoV-2 prototype strain than the dual-mutation variants (V367F+D614G), which may derivate from recombination. The analysis of critical RBD mutations provides further insights into the evolutionary trajectory of early SARS-CoV-2 variants of zoonotic origin under negative selection pressure and supports the continuing surveillance of spike mutations to aid in the development of new COVID-19 drugs and vaccines. IMPORTANCE A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused the pandemic of COVID-19. The origin of SARS-CoV-2 was associated with zoonotic infections. The spike protein receptor-binding domain (RBD) is identified as the critical determinant of viral tropism and infectivity. Thus, whether mutations in the RBD of the circulating SARS-CoV-2 isolates have altered the receptor binding affinity and made them more infectious has been the research hot spot. Given that SARS-CoV-2 is a novel coronavirus, the significance of our research is in identifying and validating the RBD mutant types emerging during the early transmission phase and increasing human angiotensin-converting enzyme 2 (ACE2) receptor binding affinity and infectivity. Our study provides insights into the evolutionary trajectory of early SARS-CoV-2 variants of zoonotic origin. The continuing surveillance of RBD mutations with increased human ACE2 affinity in human or other animals is critical to the development of new COVID-19 drugs and vaccines against these variants during the sustained COVID-19 pandemic.


Subject(s)
Amino Acid Substitution , Angiotensin-Converting Enzyme 2/genetics , COVID-19/transmission , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , COVID-19/pathology , COVID-19/virology , Gene Expression , Host-Pathogen Interactions/genetics , Humans , Kinetics , Molecular Dynamics Simulation , Phenylalanine/chemistry , Phenylalanine/metabolism , Phylogeny , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , SARS-CoV-2/classification , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Thermodynamics , Valine/chemistry , Valine/metabolism , Virulence , Virus Attachment
13.
Nat Commun ; 12(1): 5026, 2021 08 18.
Article in English | MEDLINE | ID: covidwho-1363491

ABSTRACT

Nationwide prospective surveillance of all-age patients with acute respiratory infections was conducted in China between 2009‒2019. Here we report the etiological and epidemiological features of the 231,107 eligible patients enrolled in this analysis. Children <5 years old and school-age children have the highest viral positivity rate (46.9%) and bacterial positivity rate (30.9%). Influenza virus, respiratory syncytial virus and human rhinovirus are the three leading viral pathogens with proportions of 28.5%, 16.8% and 16.7%, and Streptococcus pneumoniae, Mycoplasma pneumoniae and Klebsiella pneumoniae are the three leading bacterial pathogens (29.9%, 18.6% and 15.8%). Negative interactions between viruses and positive interactions between viral and bacterial pathogens are common. A Join-Point analysis reveals the age-specific positivity rate and how this varied for individual pathogens. These data indicate that differential priorities for diagnosis, prevention and control should be highlighted in terms of acute respiratory tract infection patients' demography, geographic locations and season of illness in China.


Subject(s)
Bacteria/isolation & purification , Bacterial Infections/microbiology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Virus Diseases/virology , Viruses/isolation & purification , Adolescent , Adult , Bacteria/classification , Bacteria/genetics , Bacterial Infections/epidemiology , Child , Child, Preschool , China/epidemiology , Female , Humans , Infant , Male , Prospective Studies , Respiratory Tract Infections/epidemiology , Seasons , Virus Diseases/epidemiology , Viruses/classification , Viruses/genetics , Young Adult
14.
Front Med (Lausanne) ; 8: 690523, 2021.
Article in English | MEDLINE | ID: covidwho-1438418

ABSTRACT

Objectives: The longitudinal characterization and risk of poor outcomes related to cytokine overproduction in critical coronavirus disease 2019 (COVID-19) patients with hyperinflammation in bronchoalveolar lavage requires further investigation. Methods: We enrolled two critically ill patients with comorbidities diagnosed with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detected by RT-PCR during hospitalization. Clinical characteristics, longitudinal immunological, and biochemical parameters of each critical COVID-19 case were collected. Main Results: The clinical characteristics and laboratory results of each case demonstrated critical symptoms of COVID-19 with poor outcomes. Both nasopharyngeal swabs and bronchoalveolar lavage fluid (BALF) samples tested positive for SARS-CoV-2. Two patients received targeted treatments against pathogen infection and inflammation in addition to interventional therapies, except for Patient 2, who received an additional artificial liver system treatment. Hyperinflammation with a dominantly high level of IL-6 was observed in BALF samples from both critical cases with decreased T cell populations. High levels of cytokines and pathological parameters were successively maintained in Patient 1, but rapidly reduced at the late treatment stage in Patient 2. The outcome of Patient 1 is death, whereas the outcome of Patient 2 is recovery. Conclusions: This case report suggests that a high risk of poor outcomes was related to a heavily hyperinflammatory milieu in both the blood and lungs of critical COVID-19 patients. The artificial liver intervention on cytokines overproduction might be beneficial for the recovery of critical COVID-19 patients as a reliable therapy that can be coordinated with targeted treatments, which ought to be further tested in adequately designed and powered clinical trials.

16.
Viruses ; 13(1)2020 12 30.
Article in English | MEDLINE | ID: covidwho-1389523

ABSTRACT

SARS-CoV-2 is highly pathogenic in humans and poses a great threat to public health worldwide. Clinical data shows a disturbed type I interferon (IFN) response during the virus infection. In this study, we discovered that the nucleocapsid (N) protein of SARS-CoV-2 plays an important role in the inhibition of interferon beta (IFN-ß) production. N protein repressed IFN-ß production induced by poly(I:C) or upon Sendai virus (SeV) infection. We noted that N protein also suppressed IFN-ß production, induced by several signaling molecules downstream of the retinoic acid-inducible gene I (RIG-I) pathway, which is the crucial pattern recognition receptor (PRR) responsible for identifying RNA viruses. Moreover, our data demonstrated that N protein interacted with the RIG-I protein through the DExD/H domain, which has ATPase activity and plays an important role in the binding of immunostimulatory RNAs. These results suggested that SARS-CoV-2 N protein suppresses the IFN-ß response through targeting the initial step, potentially the cellular PRR-RNA-recognition step in the innate immune pathway. Therefore, we propose that the SARS-CoV-2 N protein represses IFN-ß production by interfering with RIG-I.


Subject(s)
COVID-19/immunology , DEAD Box Protein 58/metabolism , Interferon-beta/metabolism , Nucleocapsid Proteins/metabolism , SARS-CoV-2/metabolism , A549 Cells , Animals , DEAD Box Protein 58/genetics , HEK293 Cells , HeLa Cells , Host-Pathogen Interactions/immunology , Humans , Protein Interaction Domains and Motifs , Receptors, Immunologic , Signal Transduction
19.
Cell Biosci ; 11(1): 168, 2021 Aug 30.
Article in English | MEDLINE | ID: covidwho-1379800

ABSTRACT

BACKGROUND: As the COVID-19 pandemic rages on, the new SARS-CoV-2 variants have emerged in the different regions of the world. These newly emerged variants have mutations in their spike (S) protein that may confer resistance to vaccine-elicited immunity and existing neutralizing antibody therapeutics. Therefore, there is still an urgent need of safe, effective, and affordable agents for prevention/treatment of SARS-CoV-2 and its variant infection. RESULTS: We demonstrated that green tea beverage (GTB) or its major ingredient, epigallocatechin gallate (EGCG), were highly effective in inhibiting infection of live SARS-CoV-2 and human coronavirus (HCoV OC43). In addition, infection of the pseudoviruses with spikes of the new variants (UK-B.1.1.7, SA-B.1.351, and CA-B.1.429) was efficiently blocked by GTB or EGCG. Among the 4 active green tea catechins at noncytotoxic doses, EGCG was the most potent in the action against the viruses. The highest inhibitory activity was observed when the viruses or the cells were pre-incubated with EGCG prior to the infection. Mechanistic studies revealed that EGCG blocked infection at the entry step through interfering with the engagement of the receptor binding domain (RBD) of the viral spikes to angiotensin-converting enzyme 2 (ACE2) receptor of the host cells. CONCLUSIONS: These data support further clinical evaluation and development of EGCG as a novel, safe, and cost-effective natural product for prevention/treatment of SARS-CoV-2 transmission and infection.

20.
Signal Transduct Target Ther ; 6(1): 308, 2021 08 18.
Article in English | MEDLINE | ID: covidwho-1364579

ABSTRACT

Cytokine storm induced by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a major pathological feature of Coronavirus Disease 2019 (COVID-19) and a crucial determinant in COVID-19 prognosis. Understanding the mechanism underlying the SARS-CoV-2-induced cytokine storm is critical for COVID-19 control. Here, we identify that SARS-CoV-2 ORF3a and host hypoxia-inducible factor-1α (HIF-1α) play key roles in the virus infection and pro-inflammatory responses. RNA sequencing shows that HIF-1α signaling, immune response, and metabolism pathways are dysregulated in COVID-19 patients. Clinical analyses indicate that HIF-1α production, inflammatory responses, and high mortalities occurr in elderly patients. HIF-1α and pro-inflammatory cytokines are elicited in patients and infected cells. Interestingly, SARS-CoV-2 ORF3a induces mitochondrial damage and Mito-ROS production to promote HIF-1α expression, which subsequently facilitates SARS-CoV-2 infection and cytokines production. Notably, HIF-1α also broadly promotes the infection of other viruses. Collectively, during SARS-CoV-2 infection, ORF3a induces HIF-1α, which in turn aggravates viral infection and inflammatory responses. Therefore, HIF-1α plays an important role in promoting SARS-CoV-2 infection and inducing pro-inflammatory responses to COVID-19.


Subject(s)
COVID-19/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mitochondria/metabolism , SARS-CoV-2/metabolism , Signal Transduction , Viroporin Proteins/metabolism , A549 Cells , Animals , Chlorocebus aethiops , HEK293 Cells , HeLa Cells , Humans , Mitochondria/pathology , RNA-Seq , THP-1 Cells , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL