Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Journal of Advanced Transportation ; 2022, 2022.
Article in English | ProQuest Central | ID: covidwho-1794351

ABSTRACT

With the development of autonomous driving technologies, robo-taxis (shared autonomous vehicles) are being tested on real roads. In China, in particular, people in some cities such as Beijing and Shanghai can book a robo-taxi online and experience the service. To examine the influential factors on user acceptance of robo-taxi services, this study proposes and employs an extended technology acceptance model (TAM) with four external factors: perceived trust, government support, social influence, and perceived enjoyment. Data were collected through an online questionnaire in China, and responses from 403 respondents were analyzed using structural equation modeling. Both typical TAM factors—including perceived ease of use, perceived usefulness, and attitude—and external factors were found to play significant roles in predicting users’ intention to use robo-taxis. The four external factors influenced the user acceptance indirectly via typical TAM factors. Improving users’ perceived trust is important for increasing public adoption. A greater emphasis by manufacturers on safety concerns, wider dissemination of information on data protection and safety systems, and government support through incentives for manufacturers and users can help improve public adoption of robo-taxi services.

2.
Anal Methods ; 14(1): 7-16, 2021 12 24.
Article in English | MEDLINE | ID: covidwho-1559288

ABSTRACT

The detection of biomolecular analytes is of great importance in clinical, environmental, and argo-food areas, among which the electrochemical methodology is attracting much attention. In particular, screen-printed electrode (SPE)-based sensing applications have exhibited potential possibility for on-site detection, especially for fast clinical biomarker detection, since they provide a miniaturized but robust and portable electrode detection system. In this context, we focused on the modification of SPE with functional antibodies to improve the electrochemical detection performance in versatile sensing applications, particularly for COVID-19 detection. These antibodies were immobilized onto the electrode surface via various methodologies, through which the powerful potential from the modification of SPE was revealed. Finally, more novel and excellent works on the biomolecular modification of SPE and the prospects of this technology from its state-of-art status to commercialization are previewed and future perspectives in this field are mentioned.


Subject(s)
Biosensing Techniques , COVID-19 , Electrodes , Humans , SARS-CoV-2
3.
PLoS Pathog ; 17(11): e1010053, 2021 11.
Article in English | MEDLINE | ID: covidwho-1506691

ABSTRACT

COVID-19 patients transmitted SARS-CoV-2 to minks in the Netherlands in April 2020. Subsequently, the mink-associated virus (miSARS-CoV-2) spilled back over into humans. Genetic sequences of the miSARS-CoV-2 identified a new genetic variant known as "Cluster 5" that contained mutations in the spike protein. However, the functional properties of these "Cluster 5" mutations have not been well established. In this study, we found that the Y453F mutation located in the RBD domain of miSARS-CoV-2 is an adaptive mutation that enhances binding to mink ACE2 and other orthologs of Mustela species without compromising, and even enhancing, its ability to utilize human ACE2 as a receptor for entry. Structural analysis suggested that despite the similarity in the overall binding mode of SARS-CoV-2 RBD to human and mink ACE2, Y34 of mink ACE2 was better suited to interact with a Phe rather than a Tyr at position 453 of the viral RBD due to less steric clash and tighter hydrophobic-driven interaction. Additionally, the Y453F spike exhibited resistance to convalescent serum, posing a risk for vaccine development. Thus, our study suggests that since the initial transmission from humans, SARS-CoV-2 evolved to adapt to the mink host, leading to widespread circulation among minks while still retaining its ability to efficiently utilize human ACE2 for entry, thus allowing for transmission of the miSARS-CoV-2 back into humans. These findings underscore the importance of active surveillance of SARS-CoV-2 evolution in Mustela species and other susceptible hosts in order to prevent future outbreaks.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/epidemiology , Host Adaptation , Mink/immunology , Mutation , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Adult , Aged , Angiotensin-Converting Enzyme 2/genetics , Animals , Binding Sites , COVID-19/immunology , COVID-19/therapy , COVID-19/transmission , COVID-19/virology , Female , Humans , Immunization, Passive/statistics & numerical data , Male , Middle Aged , Mink/virology , Molecular Dynamics Simulation , Netherlands/epidemiology , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , Young Adult
4.
J Virol ; 96(1): e0149221, 2022 01 12.
Article in English | MEDLINE | ID: covidwho-1476391

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in more than 235 million cases worldwide and 4.8 million deaths (October 2021), with various incidences and mortalities among regions/ethnicities. The coronaviruses SARS-CoV, SARS-CoV-2, and HCoV-NL63 utilize the angiotensin-converting enzyme 2 (ACE2) as the receptor to enter cells. We hypothesized that the genetic variability in ACE2 may contribute to the variable clinical outcomes of COVID-19. To test this hypothesis, we first conducted an in silico investigation of single-nucleotide polymorphisms (SNPs) in the coding region of ACE2. We then applied an integrated approach of genetics, biochemistry, and virology to explore the capacity of select ACE2 variants to bind coronavirus spike proteins and mediate viral entry. We identified the ACE2 D355N variant that restricts the spike protein-ACE2 interaction and consequently limits infection both in vitro and in vivo. In conclusion, ACE2 polymorphisms could modulate susceptibility to SARS-CoV-2, which may lead to variable disease severity. IMPORTANCE There is considerable variation in disease severity among patients infected with SARS-CoV-2, the virus that causes COVID-19. Human genetic variation can affect disease outcome, and the coronaviruses SARS-CoV, SARS-CoV-2, and HCoV-NL63 utilize human ACE2 as the receptor to enter cells. We found that several missense ACE2 single-nucleotide variants (SNVs) that showed significantly altered binding with the spike proteins of SARS-CoV, SARS-CoV-2, and NL63-HCoV. We identified an ACE2 SNP, D355N, that restricts the spike protein-ACE2 interaction and consequently has the potential to protect individuals against SARS-CoV-2 infection. Our study highlights that ACE2 polymorphisms could impact human susceptibility to SARS-CoV-2, which may contribute to ethnic and geographical differences in SARS-CoV-2 spread and pathogenicity.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Genetic Predisposition to Disease/genetics , Angiotensin-Converting Enzyme 2/metabolism , Genetic Variation , Humans , Polymorphism, Single Nucleotide , Protein Binding , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
5.
mBio ; 12(5): e0254221, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1462902

ABSTRACT

Damage in COVID-19 results from both the SARS-CoV-2 virus and its triggered overactive host immune responses. Therapeutic agents that focus solely on reducing viral load or hyperinflammation fail to provide satisfying outcomes in all cases. Although viral and cellular factors have been extensively profiled to identify potential anti-COVID-19 targets, new drugs with significant efficacy remain to be developed. Here, we report the potent preclinical efficacy of ALD-R491, a vimentin-targeting small molecule compound, in treating COVID-19 through its host-directed antiviral and anti-inflammatory actions. We found that by altering the physical properties of vimentin filaments, ALD-491 affected general cellular processes as well as specific cellular functions relevant to SARS-CoV-2 infection. Specifically, ALD-R491 reduced endocytosis, endosomal trafficking, and exosomal release, thus impeding the entry and egress of the virus; increased the microcidal capacity of macrophages, thus facilitating the pathogen clearance; and enhanced the activity of regulatory T cells, therefore suppressing the overactive immune responses. In cultured cells, ALD-R491 potently inhibited the SARS-CoV-2 spike protein and human ACE2-mediated pseudoviral infection. In aged mice with ongoing, productive SARS-CoV-2 infection, ALD-R491 reduced disease symptoms as well as lung damage. In rats, ALD-R491 also reduced bleomycin-induced lung injury and fibrosis. Our results indicate a unique mechanism and significant therapeutic potential for ALD-R491 against COVID-19. We anticipate that ALD-R491, an oral, fast-acting, and non-cytotoxic agent targeting the cellular protein with multipart actions, will be convenient, safe, and broadly effective, regardless of viral mutations, for patients with early- or late-stage disease, post-COVID-19 complications, and other related diseases. IMPORTANCE With the Delta variant currently fueling a resurgence of new infections in the fully vaccinated population, developing an effective therapeutic drug is especially critical and urgent in fighting COVID-19. In contrast to the many efforts to repurpose existing drugs or address only one aspect of COVID-19, we are developing a novel agent with first-in-class mechanisms of action that address both the viral infection and the overactive immune system in the pathogenesis of the disease. Unlike virus-directed therapeutics that may lose efficacy due to viral mutations, and immunosuppressants that require ideal timing to be effective, this agent, with its unique host-directed antiviral and anti-inflammatory actions, can work against all variants of the virus, be effective during all stages of the disease, and even resolve post-disease damage and complications. Further development of the compound will provide an important tool in the fight against COVID-19 and its complications, as well as future outbreaks of new viruses.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/drug therapy , COVID-19/metabolism , Organic Chemicals/therapeutic use , Spike Glycoprotein, Coronavirus/metabolism , Vimentin/metabolism , Animals , Endocytosis/drug effects , Endosomes/drug effects , Endosomes/metabolism , Exosomes/drug effects , Exosomes/metabolism , HEK293 Cells , Humans , Mice , RAW 264.7 Cells
6.
Transp Policy (Oxf) ; 106: 54-63, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1157760

ABSTRACT

The outbreak of COVID-19 constitutes an unprecedented disruption globally, in which risk management framework is on top priority in many countries. Travel restriction and home/office quarantine are some frequently utilized non-pharmaceutical interventions, which bring the worst crisis of airline industry compared with other transport modes. Therefore, the post-recovery of global air transport is extremely important, which is full of uncertainty but rare to be studied. The explicit/implicit interacted factors generate difficulties in drawing insights into the complicated relationship and policy intervention assessment. In this paper, a Causal Bayesian Network (CBN) is utilized for the modelling of the post-recovery behaviour, in which parameters are synthesized from expert knowledge, open-source information and interviews from travellers. The tendency of public policy in reaction to COVID-19 is analyzed, whilst sensitivity analysis and forward/backward belief propagation analysis are conducted. Results show the feasibility and scalability of this model. On condition that no effective health intervention method (vaccine, medicine) will be available soon, it is predicted that nearly 120 days from May 22, 2020, would be spent for the number of commercial flights to recover back to 58.52%-60.39% on different interventions. This intervention analysis framework is of high potential in the decision making of recovery preparedness and risk management for building the new normal of global air transport.

7.
PLoS Pathog ; 17(3): e1009392, 2021 03.
Article in English | MEDLINE | ID: covidwho-1148252

ABSTRACT

Coronavirus interaction with its viral receptor is a primary genetic determinant of host range and tissue tropism. SARS-CoV-2 utilizes ACE2 as the receptor to enter host cell in a species-specific manner. We and others have previously shown that ACE2 orthologs from New World monkey, koala and mouse cannot interact with SARS-CoV-2 to mediate viral entry, and this defect can be restored by humanization of the restrictive residues in New World monkey ACE2. To better understand the genetic determinants behind the ability of ACE2 orthologs to support viral entry, we compared koala and mouse ACE2 sequences with that of human and identified the key residues in koala and mouse ACE2 that restrict viral receptor activity. Humanization of these critical residues rendered both koala and mouse ACE2 capable of binding the spike protein and facilitating viral entry. Our study shed more lights into the genetic determinants of ACE2 as the functional receptor of SARS-CoV-2, which facilitates our understanding of viral entry.


Subject(s)
COVID-19/enzymology , COVID-19/genetics , Peptidyl-Dipeptidase A/genetics , Receptors, Virus/genetics , SARS-CoV-2/physiology , Animals , Base Sequence , COVID-19/virology , Host Specificity , Humans , Mice/genetics , Mice/virology , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Phascolarctidae/genetics , Phascolarctidae/virology , Receptors, Virus/metabolism , SARS-CoV-2/genetics , Sequence Alignment , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
8.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Article in English | MEDLINE | ID: covidwho-1117490

ABSTRACT

The pandemic of COVID-19, caused by SARS-CoV-2, is a major global health threat. Epidemiological studies suggest that bats (Rhinolophus affinis) are the natural zoonotic reservoir for SARS-CoV-2. However, the host range of SARS-CoV-2 and intermediate hosts that facilitate its transmission to humans remain unknown. The interaction of coronavirus with its host receptor is a key genetic determinant of host range and cross-species transmission. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) as the receptor to enter host cells in a species-dependent manner. In this study, we characterized the ability of ACE2 from diverse species to support viral entry. By analyzing the conservation of five residues in two virus-binding hotspots of ACE2 (hotspot 31Lys and hotspot 353Lys), we predicted 80 ACE2 proteins from mammals that could potentially mediate SARS-CoV-2 entry. We chose 48 ACE2 orthologs among them for functional analysis, and showed that 44 of these orthologs-including domestic animals, pets, livestock, and animals commonly found in zoos and aquaria-could bind the SARS-CoV-2 spike protein and support viral entry. In contrast, New World monkey ACE2 orthologs could not bind the SARS-CoV-2 spike protein and support viral entry. We further identified the genetic determinant of New World monkey ACE2 that restricts viral entry using genetic and functional analyses. These findings highlight a potentially broad host tropism of SARS-CoV-2 and suggest that SARS-CoV-2 might be distributed much more widely than previously recognized, underscoring the necessity to monitor susceptible hosts to prevent future outbreaks.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/veterinary , Receptors, Virus/genetics , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , Host Specificity , Humans , Pandemics/prevention & control , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Phylogeny , Protein Binding , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Tropism , Viral Zoonoses/genetics , Viral Zoonoses/prevention & control , Viral Zoonoses/virology , Virus Attachment , Virus Internalization
9.
Eur J Pharmacol ; 890: 173661, 2021 Jan 05.
Article in English | MEDLINE | ID: covidwho-1049782

ABSTRACT

COVID-19 (Coronavirus disease 2019) is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a positive-sense RNA virus. This virus has emerged as a threat to global health, social stability, and the global economy. This pandemic continues to cause rampant mortality worldwide with the dire urgency to develop novel therapeutic agents. To meet this task, this article discusses advances in the research and potential application of bioactive peptides for possible mitigation of infection by SARS-CoV-2. Growing insight into the molecular biology of SARS-CoV-2 has revealed potential druggable targets for bioactive peptides. Bioactive peptides with unique amino acid sequences can mitigate such targets including, type II transmembrane serine proteases (TMPRSS2) inhibition, furin cleavage, and renin-angiotensin-aldosterone system (RAAS) members. Based on current evidence and structure-function analysis, multiple bioactive peptides present potency to neutralize the virus. To date, no SARS-CoV-2-explicit drug has been reported, but we here introduce bioactive peptides in the perspective of their potential activity against SARS-CoV-2 infection.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , Peptides/therapeutic use , SARS-CoV-2 , Animals , Humans
10.
J Agric Food Chem ; 68(49): 14402-14408, 2020 Dec 09.
Article in English | MEDLINE | ID: covidwho-1023816

ABSTRACT

IRW (Ile-Arg-Trp) was identified as an inhibitor of angiotensin converting enzyme (ACE) from egg white protein ovotransferrin through an integrated in silico digestion and quantitative structure and activity relationship prediction in 2011. Oral administration of IRW to spontaneously hypertensive rats (SHRs) can significantly reduce blood pressure, via upregulation of ACE2, but not through the inhibition of ACE. ACE2 converts Ang II into Ang (1-7), thus lowering blood pressure via Mas receptor (MasR); coinfusion of Mas receptor antagonist A779 and IRW in SHRs abolished blood pressure-lowering effect of IRW, supporting a key role of ACE2/Ang (1-7)/MasR axis. Our ongoing study further established new roles of IRW as an antioxidant, an anti-inflammatory agent, an insulin sensitizer, and a bone cell anabolic. Future studies are warranted to understand the unique structure features of this peptide, its mechanisms of action at various targets, its bioavailability and metabolism, and its possible roles toward COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Conalbumin/pharmacology , Enzyme Activators/pharmacology , Oligopeptides/pharmacology , Peptide Fragments/pharmacology , Animals , Cell Line , Conalbumin/therapeutic use , Enzyme Activators/therapeutic use , Humans , Oligopeptides/therapeutic use , Peptide Fragments/therapeutic use , SARS-CoV-2/metabolism , Virus Attachment
SELECTION OF CITATIONS
SEARCH DETAIL