Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Acta Pharm Sin B ; 11(9): 2850-2858, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1415197

ABSTRACT

COVID-19 pandemic caused by SARS-CoV-2 infection severely threatens global health and economic development. No effective antiviral drug is currently available to treat COVID-19 and any other human coronavirus infections. We report herein that a macrolide antibiotic, carrimycin, potently inhibited the cytopathic effects (CPE) and reduced the levels of viral protein and RNA in multiple cell types infected by human coronavirus 229E, OC43, and SARS-CoV-2. Time-of-addition and pseudotype virus infection studies indicated that carrimycin inhibited one or multiple post-entry replication events of human coronavirus infection. In support of this notion, metabolic labelling studies showed that carrimycin significantly inhibited the synthesis of viral RNA. Our studies thus strongly suggest that carrimycin is an antiviral agent against a broad-spectrum of human coronaviruses and its therapeutic efficacy to COVID-19 is currently under clinical investigation.

2.
Acta Pharmaceutica Sinica ; 56(5):1400-1408, 2021.
Article in Chinese | CAB Abstracts | ID: covidwho-1374707

ABSTRACT

Qing-Fei-Pai-Du decoction (QFPDD) is a combination of traditional Chinese medicine and plays an important role in the treatment of coronavirus disease 2019 (COVID-19). This study investigated the inhibitory effect of QFPDD on coronavirus replication and antiviral mechanism. The cytotoxicity of QFPDD was determined by PrestoBlue cell viability assay. Quantitive reverse transcription PCR (qRT-PCR) and immunofluorescence assay (IF) were used to detect the inhibitory effects of QFPDD on coronavirus at RNA and protein levels. qRT-PCR was used to detect the adsorption and penetration of coronavirus after QFPDD treatment. The effects of QFPDD on interferon (IFN) and interferon-stimulated genes (ISGs) were also detected by qRT-PCR. The results showed that QFPDD inhibited coronavirus at RNA and protein levels in a dose-dependent manner at non-toxic concentration, and QFPDD targeted in the early stages of coronavirus infection cycle. Preliminary mechanism studies have shown that QFPDD can directly block the virus entry into the cell by inhibiting virus adsorption, and QFPDD can also play an antiviral role by up-regulating the expression of IFN and ISGs. These results indicate QFPDD as a drug potential to treat coronavirus infection.

3.
Nat Commun ; 12(1): 814, 2021 02 05.
Article in English | MEDLINE | ID: covidwho-1065864

ABSTRACT

On the basis of Covid-19-induced pulmonary pathological and vascular changes, we hypothesize that the anti-vascular endothelial growth factor (VEGF) drug bevacizumab might be beneficial for treating Covid-19 patients. From Feb 15 to April 5, 2020, we conducted a single-arm trial (NCT04275414) and recruited 26 patients from 2-centers (China and Italy) with severe Covid-19, with respiratory rate ≥30 times/min, oxygen saturation ≤93% with ambient air, or partial arterial oxygen pressure to fraction of inspiration O2 ratio (PaO2/FiO2) >100 mmHg and ≤300 mmHg, and diffuse pneumonia confirmed by chest imaging. Followed up for 28 days. Among these, bevacizumab plus standard care markedly improves the PaO2/FiO2 ratios at days 1 and 7. By day 28, 24 (92%) patients show improvement in oxygen-support status, 17 (65%) patients are discharged, and none show worsen oxygen-support status nor die. Significant reduction of lesion areas/ratios are shown in chest computed tomography (CT) or X-ray within 7 days. Of 14 patients with fever, body temperature normalizes within 72 h in 13 (93%) patients. Relative to comparable controls, bevacizumab shows clinical efficacy by improving oxygenation and shortening oxygen-support duration. Our findings suggest bevacizumab plus standard care is highly beneficial for patients with severe Covid-19. Randomized controlled trial is warranted.


Subject(s)
Bevacizumab/therapeutic use , COVID-19/drug therapy , SARS-CoV-2/drug effects , Aged , Angiogenesis Inhibitors/therapeutic use , Body Temperature/drug effects , COVID-19/virology , China , Female , Fever/prevention & control , Humans , Italy , Male , Middle Aged , SARS-CoV-2/physiology , Treatment Outcome
4.
Molecules ; 26(1)2020 Dec 24.
Article in English | MEDLINE | ID: covidwho-1044927

ABSTRACT

The novel coronavirus disease (2019-nCoV) has been affecting global health since the end of 2019, and there is no sign that the epidemic is abating. Targeting the interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor is a promising therapeutic strategy. In this study, surface plasmon resonance (SPR) was used as the primary method to screen a library of 960 compounds. A compound 02B05 (demethylzeylasteral, CAS number: 107316-88-1) that had high affinities for S-RBD and ACE2 was discovered, and binding affinities (KD, µM) of 02B05-ACE2 and 02B05-S-RBD were 1.736 and 1.039 µM, respectively. The results of a competition experiment showed that 02B05 could effectively block the binding of S-RBD to ACE2 protein. Furthermore, pseudovirus infection assay revealed that 02B05 could inhibit entry of SARS-CoV-2 pseudovirus into 293T cells to a certain extent at nontoxic concentration. The compoundobtained in this study serve as references for the design of drugs which have potential in the treatment of COVID-19 and can thus accelerate the process of developing effective drugs to treat SARS-CoV-2 infections.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Protein Interaction Domains and Motifs/drug effects , SARS-CoV-2/metabolism , Surface Plasmon Resonance/methods , Triterpenes/pharmacology , Viral Proteins/metabolism , HEK293 Cells , Humans , Protein Binding
5.
Molecules ; 26(1):57, 2021.
Article in English | ScienceDirect | ID: covidwho-984996

ABSTRACT

The novel coronavirus disease (2019-nCoV) has been affecting global health since the end of 2019, and there is no sign that the epidemic is abating. Targeting the interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor is a promising therapeutic strategy. In this study, surface plasmon resonance (SPR) was used as the primary method to screen a library of 960 compounds. A compound 02B05 (demethylzeylasteral, CAS number: 107316-88-1) that had high affinities for S-RBD and ACE2 was discovered, and binding affinities (KD, μM) of 02B05-ACE2 and 02B05-S-RBD were 1.736 and 1.039 μM, respectively. The results of a competition experiment showed that 02B05 could effectively block the binding of S-RBD to ACE2 protein. Furthermore, pseudovirus infection assay revealed that 02B05 could inhibit entry of SARS-CoV-2 pseudovirus into 293T cells to a certain extent at nontoxic concentration. The compoundobtained in this study serve as references for the design of drugs which have potential in the treatment of COVID-19 and can thus accelerate the process of developing effective drugs to treat SARS-CoV-2 infections.

6.
World J Clin Cases ; 8(19): 4303-4310, 2020 Oct 06.
Article in English | MEDLINE | ID: covidwho-819327

ABSTRACT

In December 2019, an outbreak of unexplained pneumonia was reported in Wuhan, China. The World Health Organization officially named this disease as novel coronavirus disease 2019 (COVID-19). Liver injury was observed in patients with COVID-19, and its severity varied depending on disease severity, geographical area, and patient age. Systemic inflammatory response, immune damage, ischemia-reperfusion injury, viral direct damage, drug induce, mechanical ventilation, and underlying diseases may contribute to liver injury. Although, in most cases, mild liver dysfunction is observed, which is usually temporary and does not require special treatment, the importance of monitoring liver injury should be emphasized for doctors. The risk of COVID-19 infection of liver transplantation recipients caused more and more concerns. In this article, we aimed to review the available literature on liver injury in COVID-19 to highlight the importance of monitoring and treating liver injury in COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL