Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add filters

Year range
1.
J Med Virol ; 2022 Jan 09.
Article in English | MEDLINE | ID: covidwho-1616021

ABSTRACT

A novel coronavirus, SARS-CoV-2, has caused over 274 million cases and over 5.3 million deaths worldwide since it occurred in December 2019 in Wuhan, China. Here we conceptualized the temporospatial evolutionary and expansion dynamics of SARS-CoV-2 by taking a series of the cross-sectional view of viral genomes from early outbreak in January 2020 in Wuhan to the early phase of global ignition in early April, and finally to the subsequent global expansion by late December 2020. Based on the phylogenetic analysis of the early patients in Wuhan, Wuhan/WH04/2020 is supposed to be a more appropriate reference genome of SARS-CoV-2, instead of the first sequenced genome Wuhan-Hu-1. By scrutinizing the cases from the very early outbreak, we found a viral genotype from the Seafood Market in Wuhan featured with two concurrent mutations (i.e., M type) had become the overwhelmingly dominant genotype (95.3%) of the pandemic 1 year later. By analyzing 4013 SARS-CoV-2 genomes from different continents by early April, we were able to interrogate the viral genomic composition dynamics of the initial phase of global ignition over a time span of 14 weeks. Eleven major viral genotypes with unique geographic distributions were also identified. WE1 type, a descendant of M and predominantly witnessed in western Europe, consisted of half of all the cases (50.2%) at the time. The mutations of major genotypes at the same hierarchical level were mutually exclusive, which implies that various genotypes bearing the specific mutations were propagated during human-to-human transmission, not by accumulating hot-spot mutations during the replication of individual viral genomes. As the pandemic was unfolding, we also used the same approach to analyze 261 323 SARS-CoV-2 genomes from the world since the outbreak in Wuhan (i.e., including all the publicly available viral genomes) to recapitulate our findings over 1-year time span. By December 25, 2020, 95.3% of global cases were M type and 93.0% of M-type cases were WE1. In fact, at present all the five variants of concern (VOC) are the descendants of WE1 type. This study demonstrates that viral genotypes can be utilized as molecular barcodes in combination with epidemiologic data to monitor the spreading routes of the pandemic and evaluate the effectiveness of control measures. Moreover, the dynamics of viral mutational spectrum in the study may help the early identification of new strains in patients to reduce further spread of infection, guide the development of molecular diagnosis and vaccines against COVID-19, and help assess their accuracy and efficacy in real world at real time.

2.
Frontiers in cellular and infection microbiology ; 11, 2021.
Article in English | EuropePMC | ID: covidwho-1564449

ABSTRACT

Patients with Coronavirus Disease 2019 (COVID-19), due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection mainly present with respiratory issues and related symptoms, in addition to significantly affected digestive system, especially the intestinal tract. While several studies have shown changes in the intestinal flora of patients with COVID-19, not much information is available on the gut virome of such patients. In this study, we used the viromescan software on the latest gut virome database to analyze the intestinal DNA virome composition of 15 patients with COVID-19 and investigated the characteristic alternations, particularly of the intestinal DNA virome to further explore the influence of COVID-19 on the human gut. The DNA viruses in the gut of patients with COVID-19 were mainly crAss-like phages (35.48%), Myoviridae (20.91%), and Siphoviridae (20.43%) family of viruses. Compared with healthy controls, the gut virome composition of patients with COVID-19 changed significantly, especially the crAss-like phages family, from the first time of hospital admission. A potential correlation is also indicated between the change in virome and bacteriome (like Tectiviridae and Bacteroidaceae). The abundance of the viral and bacterial population was also analyzed through continuous sample collection from the gut of patients hospitalized due to COVID-19. The gut virome is indeed affected by the SARS-CoV-2 infection, and along with gut bacteriome, it may play an important role in the disease progression of COVID-19. These conclusions would be helpful in understanding the gut-related response and contribute to the treatment and prevention strategies of COVID-19.

3.
Preprint in English | EuropePMC | ID: ppcovidwho-295863

ABSTRACT

The stock market is volatile and complicated, especially in 2020. Because of a series of global and regional "black swans," such as the COVID-19 pandemic, the U.S. stock market triggered the circuit breaker three times within one week of March 9 to 16, which is unprecedented throughout history. Affected by the whole circumstance, the stock prices of individual corporations also plummeted by rates that were never predicted by any pre-developed forecasting models. It reveals that there was a lack of satisfactory models that could predict the changes in stocks prices when catastrophic, highly unlikely events occur. To fill the void of such models and to help prevent investors from heavy losses during uncertain times, this paper aims to capture the movement pattern of stock prices under anomalous circumstances. First, we detect outliers in sequential stock prices by fitting a standard ARIMA model and identifying the points where predictions deviate significantly from actual values. With the selected data points, we train ARIMA and LSTM models at the single-stock level, industry level, and general market level, respectively. Since the public moods affect the stock market tremendously, a sentiment analysis is also incorporated into the models in the form of sentiment scores, which are converted from comments about specific stocks on Reddit. Based on 100 companies' stock prices in the period of 2016 to 2020, the models achieve an average prediction accuracy of 98% which can be used to optimize existing prediction methodologies.

4.
International Journal of Multiphase Flow ; : 103904, 2021.
Article in English | ScienceDirect | ID: covidwho-1521054

ABSTRACT

On March 11, 2020, COVID-19 was declared as a pandemic by World Health Organization (WHO). Effective prevention is indispensable for defeating the ongoing COVID-19 pandemic. The evaporation and diffusion characteristics of the droplet in the air are the critical factors for the virus transmission by droplets. To better understand transmission routes of COVID-19 through respiratory droplets, a new evaporation and dispersion model for respiratory droplets is proposed to estimate droplet lifetime and the size of spreading zone in air. The importance of respiratory activities and environmental factors on the transmission of respiratory viruses are further discussed. The predictive results demonstrate initial particle size, ambient temperature and relative humidity all have significant effect on the survival time and infection distance of respiratory droplets. Decreasing droplet initial size always shortens the lifetime and the transmission distance of respiratory droplets. The 100 μm droplets expelled by talking or coughing can be carried more than 2 m away. Increasing ambient temperature and decreasing ambient humidity can effectively reduce the lifetime and propagation distance of respiratory droplets, thus reducing the risk of viral infection. These findings could contribute to developing effective prevention measures for controlling infectious disease transmission via droplets.

5.
Sci Rep ; 11(1): 21654, 2021 11 04.
Article in English | MEDLINE | ID: covidwho-1504870

ABSTRACT

To slow the spread of infectious disease, it is crucial to understand the engagement of protective behavior among individuals. The purpose of this study was to systematically examine individuals' protective behaviors and the associated factors across countries during COVID-19. This causal-comparative study used a self-developed online survey to assess individuals' level of engagement with six protective behaviors. Analysis of variance and McNemar's test were employed for data analysis. Three hundred and eighty-four responses were analyzed. The majority of participants lived in three areas: Taiwan, Japan, and North America. Overall, the participants reported a high level of engagement in protective behaviors. However, engagement levels varied according to several demographic variables. Hand hygiene and cleaning/ventilation are two independent behaviors that differ from almost all other protective behaviors. There is a need to target the population at risk, which demonstrates low compliance. Different strategies are needed to promote specific protective behaviors.


Subject(s)
COVID-19/prevention & control , COVID-19/psychology , Risk Reduction Behavior , Adult , Female , Hand Hygiene/trends , Health Behavior , Humans , Male , Middle Aged , Physical Distancing , SARS-CoV-2/pathogenicity , Surveys and Questionnaires
6.
Front Microbiol ; 12: 712081, 2021.
Article in English | MEDLINE | ID: covidwho-1497098

ABSTRACT

COVID-19 is mainly associated with respiratory distress syndrome, but a subset of patients often present gastrointestinal (GI) symptoms. Imbalances of gut microbiota have been previously linked to respiratory virus infection. Understanding how the gut-lung axis affects the progression of COVID-19 can provide a novel framework for therapies and management. In this study, we examined the gut microbiota of patients with COVID-19 (n = 47) and compared it to healthy controls (n = 19). Using shotgun metagenomic sequencing, we have identified four microorganisms unique in COVID-19 patients, namely Streptococcus thermophilus, Bacteroides oleiciplenus, Fusobacterium ulcerans, and Prevotella bivia. The abundances of Bacteroides stercoris, B. vulgatus, B. massiliensis, Bifidobacterium longum, Streptococcus thermophilus, Lachnospiraceae bacterium 5163FAA, Prevotella bivia, Erysipelotrichaceae bacterium 6145, and Erysipelotrichaceae bacterium 2244A were enriched in COVID-19 patients, whereas the abundances of Clostridium nexile, Streptococcus salivarius, Coprococcus catus, Eubacterium hallii, Enterobacter aerogenes, and Adlercreutzia equolifaciens were decreased (p < 0.05). The relative abundance of butyrate-producing Roseburia inulinivorans is evidently depleted in COVID-19 patients, while the relative abundances of Paraprevotella sp. and the probiotic Streptococcus thermophilus were increased. We further identified 30 KEGG orthology (KO) modules overrepresented, with 7 increasing and 23 decreasing modules. Notably, 15 optimal microbial markers were identified using the random forest model to have strong diagnostic potential in distinguishing COVID-19. Based on Spearman's correlation, eight species were associated with eight clinical indices. Moreover, the increased abundance of Bacteroidetes and decreased abundance of Firmicutes were also found across clinical types of COVID-19. Our findings suggest that the alterations of gut microbiota in patients with COVID-19 may influence disease severity. Our COVID-19 classifier, which was cross-regionally verified, provides a proof of concept that a set of microbial species markers can distinguish the presence of COVID-19.

7.
Endocrine ; 2021 Oct 30.
Article in English | MEDLINE | ID: covidwho-1491380

ABSTRACT

Type 2 diabetes (T2D) increases the risk of coronavirus disease (COVID-19). This study investigates the association between glucose control of COVID-19 patients with T2D in first 7 days after hospital admission and prognosis. A total of 252 infected inpatients with T2D in China were included. Well-controlled blood glucose was defined as stable fasting blood glucose (FBG) levels in the range of 3.9-7.8 mmol/L during first 7 days using indicators of average (FBGA), maximum (FBGM) or first-time (FBG1) FBG levels. The primary endpoint was admission to intensive care unit or death. Hazard ratio (HR) of poorly controlled glucose level group compared with well-controlled group were 4.96 (P = 0.021) for FBGM and 5.55 (P = 0.014) for FBGA. Well-controlled blood glucose levels in first 7 days could improve the prognosis of COVID-19 inpatients with diabetes.

9.
Environ Sci Pollut Res Int ; 2021 Sep 30.
Article in English | MEDLINE | ID: covidwho-1446195

ABSTRACT

This study sought to identify the spatial, temporal, and spatiotemporal clusters of COVID-19 cases in 366 cities in mainland China with the highest risks and to explore the possible influencing factors of imported risks and environmental factors on the spatiotemporal aggregation, which would be useful to the design and implementation of critical preventative measures. The retrospective analysis of temporal, spatial, and spatiotemporal clustering of COVID-19 during the period (January 15 to February 25, 2020) was based on Kulldorff's time-space scanning statistics using the discrete Poisson probability model, and then the logistic regression model was used to evaluate the impact of imported risk and environmental factors on spatiotemporal aggregation. We found that the spatial distribution of COVID-19 cases was nonrandom; the Moran's I value ranged from 0.017 to 0.453 (P < 0.001). One most likely cluster and three secondary likely clusters were discovered in spatial cluster analysis. The period from February 2 to February 9, 2020, was identified as the most likely cluster in the temporal cluster analysis. One most likely cluster and seven secondary likely clusters were discovered in spatiotemporal cluster analysis. Imported risk, humidity, and inhalable particulate matter PM2.5 had a significant impact on temporal and spatial accumulation, and temperature and PM10 had a low correlation with the spatiotemporal aggregation of COVID-19. The information is useful for health departments to develop a better prevention strategy and potentially increase the effectiveness of public health interventions.

10.
Protein Cell ; 2021 Sep 23.
Article in English | MEDLINE | ID: covidwho-1432661

ABSTRACT

New threats posed by the emerging circulating variants of SARS-CoV-2 highlight the need to find conserved neutralizing epitopes for therapeutic antibodies and efficient vaccine design. Here, we identified a receptor-binding domain (RBD)-binding antibody, XG014, which potently neutralizes ß-coronavirus lineage B (ß-CoV-B), including SARS-CoV-2, its circulating variants, SARS-CoV and bat SARSr-CoV WIV1. Interestingly, antibody family members competing with XG014 binding show reduced levels of cross-reactivity and induce antibody-dependent SARS-CoV-2 spike (S) protein-mediated cell-cell fusion, suggesting a unique mode of recognition by XG014. Structural analyses reveal that XG014 recognizes a conserved epitope outside the ACE2 binding site and completely locks RBD in the non-functional "down" conformation, while its family member XG005 directly competes with ACE2 binding and position the RBD "up". Single administration of XG014 is effective in protection against and therapy of SARS-CoV-2 infection in vivo. Our findings suggest the potential to develop XG014 as pan-ß-CoV-B therapeutics and the importance of the XG014 conserved antigenic epitope for designing broadly protective vaccines against ß-CoV-B and newly emerging SARS-CoV-2 variants of concern.

11.
Front Med (Lausanne) ; 8: 699706, 2021.
Article in English | MEDLINE | ID: covidwho-1394781

ABSTRACT

Objective: To distinguish COVID-19 patients and non-COVID-19 viral pneumonia patients and classify COVID-19 patients into low-risk and high-risk at admission by laboratory indicators. Materials and methods: In this retrospective cohort, a total of 3,563 COVID-19 patients and 118 non-COVID-19 pneumonia patients were included. There are two cohorts of COVID-19 patients, including 548 patients in the training dataset, and 3,015 patients in the testing dataset. Laboratory indicators were measured during hospitalization for all patients. Based on laboratory indicators, we used the support vector machine and joint random sampling to risk stratification for COVID-19 patients at admission. Based on laboratory indicators detected within the 1st week after admission, we used logistic regression and joint random sampling to develop the survival mode. The laboratory indicators of COVID-10 and non-COVID-19 were also compared. Results: We first identified the significant laboratory indicators related to the severity of COVID-19 in the training dataset. Neutrophils percentage, lymphocytes percentage, creatinine, and blood urea nitrogen with AUC >0.7 were included in the model. These indicators were further used to build a support vector machine model to classify patients into low-risk and high-risk at admission in the testing dataset. Results showed that this model could stratify the patients in the testing dataset effectively (AUC = 0.89). Our model still has good performance at different times (Mean AUC: 0.71, 0.72, 0.72, respectively for 3, 5, and 7 days after admission). Moreover, laboratory indicators detected within the 1st week after admission were able to estimate the probability of death (AUC = 0.95). We identified six indicators with permutation p < 0.05, including eosinophil percentage (p = 0.007), white blood cell count (p = 0.045), albumin (p = 0.041), aspartate transaminase (p = 0.043), lactate dehydrogenase (p = 0.002), and hemoglobin (p = 0.031). We could diagnose COVID-19 and differentiate it from other kinds of viral pneumonia based on these laboratory indicators. Conclusions: Our risk-stratification model based on laboratory indicators could help to diagnose, monitor, and predict severity at an early stage of COVID-19. In addition, laboratory findings could be used to distinguish COVID-19 and non-COVID-19.

12.
Intell Med ; 2021 Aug 25.
Article in English | MEDLINE | ID: covidwho-1370546

ABSTRACT

Background: The current development of vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unprecedented. Little is known, however, about the nuanced public opinions on the vaccines on social media. Methods: We adopt a human-guided machine learning framework using more than six million tweets from almost two million unique Twitter users to capture public opinions on the vaccines for SARS-CoV-2, classifying them into three groups: pro-vaccine, vaccine-hesitant, and anti-vaccine. After feature inference and opinion mining, 10,945 unique Twitter users are included in the study population. Multinomial logistic regression and counterfactual analysis are conducted. Results: Socioeconomically disadvantaged groups are more likely to hold polarized opinions on coronavirus disease 2019 (COVID-19) vaccines either pro-vaccine ( B = 0.40 , S E = 0.08 , P < . 001 , O R = 1.49 ; 95 % C I = [ 1.26 , 1.75 ] ) or anti-vaccine ( B = 0.52 , S E = 0.06 , P < . 001 , O R = 1.69 ; 95 % C I = [ 1.49 , 1.91 ] ). People who have the worst personal pandemic experience are more likely to hold the anti-vaccine opinion ( B = - 0.18 , S E = 0.04 , P < . 001 , O R = 0.84 ; 95 % C I = [ 0.77 , 0.90 ] ). The U.S. public is most concerned about the safety, effectiveness, and political issues regarding vaccines for COVID-19, and improving personal pandemic experience increases the vaccine acceptance level. Conclusion: Opinion on COVID-19 vaccine uptake varies across people of different characteristics.

13.
Huan Jing Ke Xue ; 42(9): 4116-4125, 2021 Sep 08.
Article in Chinese | MEDLINE | ID: covidwho-1368045

ABSTRACT

Organic carbon (OC), elemental carbon (EC), and PM2.5 concentration data obtained from Shanxi Super Station in Jiashan County of Jiaxing City, in the winter of 2018 and 2019, were analyzed to determine the variation and potential source areas of carbonaceous aerosols. The results show that OC concentrations in the winter of 2018 and 2019 were 6.90 µg·m-3 and 5.63 µg·m-3, respectively, while EC concentrations were 2.47 µg·m-3 and 1.57 µg·m-3, respectively. The concentrations of OC and EC in the winter of 2019 were lower than those in the winter of 2018, by approximately 18.4% and 36.4%, respectively. In 2018 and 2019, the concentrations of secondary organic carbon (SOC), calculated using the minimum R-squared (MRS) method, were 1.49 µg·m-3 and 1.97 µg·m-3, respectively, and the concentrations of primary organic carbon (POC) were 5.41 µg·m-3 and 3.66 µg·m-3, respectively. The proportion of POC in OC showed a downward trend, from 96.0% in December 2018 to 64.9% in February 2020, indicating a decrease of 31.1 percentage points. SOC showed an upward trend, increasing by 31.1 percentage points from 4.0% in December 2018 to 35.1% in February 2020. It is worth noting that with the increase in PM2.5 concentration, the concentration of OC and EC increased by 474.7% and 408.2%, respectively, although the proportion of OC in PM2.5 decreased from 18.8% to 12.3%. and the percentage of OC decreased from 5.8% to 3.3%. The contribution of POC to PM2.5 did not fluctuate, and only decreased significantly above 150 µg·m-3, while the contribution of SOC to PM2.5 first decreased and then increased. In Jiaxing, the potential sources of OC and EC were mainly southern Jiangsu, southeastern Anhui, local Jiaxing, and northern Zhejiang. In the winter of the contribution concentrations of OC and EC in the main potential source regions were approximately 2 µg·m-3 and 6 µg·m-3 lower, respectively, than in winter 2018. The range of high values in the potential source regions also decreased in 2019. Before the COVID-19 epidemic, it was affected by both motor vehicle exhaust emissions and coal burning. During the Spring Festival and home isolation, due to traffic control and other reasons, motor vehicle emissions were reduced, which leaving coal burning as the main contributor.


Subject(s)
Air Pollutants , COVID-19 , Aerosols/analysis , Air Pollutants/analysis , Environmental Monitoring , Humans , Particulate Matter/analysis , SARS-CoV-2
14.
Int J Disaster Risk Reduct ; 64: 102516, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1364078

ABSTRACT

A review of the disaster literature indicates that emergency responses to pandemics are often understudied; the current COVID-19 crisis provides an important opportunity to improve awareness and understanding about this and other contagious and disruptive diseases. With this in mind, this study examines Taiwan's response to COVID-19 because it was successful in spite of a high probability of contagion. The paper first explores the assertion that cognition, communication, collaboration, and control are vital for effective disaster response; it then indicates the need to consider two additional Cs: confidence (trust of government's competency) and coproduction (public participation in disaster transmission prevention). The paper also conducts a qualitative descriptive study of the Taiwan government's response timeline with examples of each of these concepts in action. To further illustrate the need for the two additional Cs, survey data illustrate how public confidence serves as a pivot between government's COVID-19 response and citizen coproduction in COVID-19 transmission prevention.

15.
Virol Sin ; 36(5): 1104-1112, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1358127

ABSTRACT

SARS-CoV-2 has become a global pandemic threatening human health and safety. It is urgent to find effective therapeutic agents and targets with the continuous emergence of novel mutant strains. The knowledge of the molecular basis and pathogenesis of SARS-CoV-2 in host cells requires to be understood comprehensively. The unknown structure and function of nsp2 have hindered our understanding of its role in SARS-CoV-2 infection. Here, we report the crystal structure of the N-terminal of SARS-CoV-2 nsp2 to a high resolution of 1.96 Å. This novel structure contains three zinc fingers, belonging to the C2H2, C4, and C2HC types, respectively. Structure analysis suggests that nsp2 may be involved in binding nucleic acids and regulating intracellular signaling pathways. The binding to single or double-stranded nucleic acids was mainly through the large positively charged region on the surface of nsp2, and K111, K112, K113 were key residues. Our findings lay the foundation for a better understanding of the relationship between structure and function for nsp2. It is helpful to make full use of nsp2 as further research and development of antiviral targets and drug design.

16.
Environ Sci Pollut Res Int ; 28(39): 54299-54316, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1358116

ABSTRACT

The new severe acute respiratory syndrome coronavirus 2 was initially discovered at the end of 2019 in Wuhan City in China and has caused one of the most serious global public health crises. A collection and analysis of studies related to the association between COVID-19 (coronavirus disease 2019) transmission and meteorological factors, such as humidity, is vital and indispensable for disease prevention and control. A comprehensive literature search using various databases, including Web of Science, PubMed, and Chinese National Knowledge Infrastructure, was systematically performed to identify eligible studies from Dec 2019 to Feb 1, 2021. We also established six criteria to screen the literature to obtain high-quality literature with consistent research purposes. This systematic review included a total of 62 publications. The study period ranged from 1 to 8 months, with 6 papers considering incubation, and the lag effect of climate factors on COVID-19 activity being taken into account in 22 studies. After quality assessment, no study was found to have a high risk of bias, 30 studies were scored as having moderate risks of bias, and 32 studies were classified as having low risks of bias. The certainty of evidence was also graded as being low. When considering the existing scientific evidence, higher temperatures may slow the progression of the COVID-19 epidemic. However, during the course of the epidemic, these climate variables alone could not account for most of the variability. Therefore, countries should focus more on health policies while also taking into account the influence of weather.


Subject(s)
COVID-19 , China , Health Policy , Humans , Research , SARS-CoV-2
17.
Bioengineered ; 12(1): 4054-4069, 2021 12.
Article in English | MEDLINE | ID: covidwho-1348035

ABSTRACT

During the pandemic of the coronavirus disease 2019, there exist quite a few studies on angiotensin-converting enzyme 2 (ACE2) and SARS-CoV-2 infection, while little is known about ACE2 in hepatocellular carcinoma (HCC). The detailed mechanism among ACE2 and HCC still remains unclear, which needs to be further investigated. In the current study with a total of 6,926 samples, ACE2 expression was downregulated in HCC compared with non-HCC samples (standardized mean difference = -0.41). With the area under the curve of summary receiver operating characteristic = 0.82, ACE2 expression showed a better ability to differentiate HCC from non-HCC. The mRNA expression of ACE2 was related to the age, alpha-fetoprotein levels and cirrhosis of HCC patients, and it was identified as a protected factor for HCC patients via Kaplan-Meier survival, Cox regression analyses. The potential molecular mechanism of ACE2 may be relevant to catabolic and cell division. In all, decreasing ACE2 expression can be seen in HCC, and its protective role for HCC patients and underlying mechanisms were explored in the study.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , Carcinoma, Hepatocellular/genetics , Liver Cirrhosis/genetics , Liver Neoplasms/genetics , Neoplasm Proteins/genetics , Receptors, Virus/genetics , alpha-Fetoproteins/genetics , Age Factors , Aged , Angiotensin-Converting Enzyme 2/metabolism , Area Under Curve , COVID-19/virology , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Databases, Genetic , Datasets as Topic , Female , Gene Expression Regulation, Neoplastic , Humans , Liver Cirrhosis/diagnosis , Liver Cirrhosis/mortality , Liver Cirrhosis/pathology , Liver Neoplasms/diagnosis , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Male , Middle Aged , Neoplasm Proteins/classification , Neoplasm Proteins/metabolism , Protective Factors , Protein Interaction Mapping , ROC Curve , Receptors, Virus/metabolism , SARS-CoV-2/pathogenicity , Survival Analysis , alpha-Fetoproteins/metabolism
19.
BMC Infect Dis ; 21(1): 647, 2021 Jul 05.
Article in English | MEDLINE | ID: covidwho-1337508

ABSTRACT

BACKGROUND: Males and females differ in their immunological responses to foreign pathogens. However, most of the current COVID-19 clinical practices and trials do not take the sex factor into consideration. METHODS: We performed a sex-based comparative analysis for the clinical outcomes, peripheral immune cells, and severe acute respiratory syndrome coronavirus (SARS-CoV-2) specific antibody levels of 1558 males and 1499 females COVID-19 patients from a single center. The lymphocyte subgroups were measured by Flow cytometry. The total antibody, Spike protein (S)-, receptor binding domain (RBD)-, and nucleoprotein (N)- specific IgM and IgG levels were measured by chemiluminescence. RESULTS: We found that male patients had approximately two-fold rates of ICU admission (4.7% vs. 2.7% in males and females, respectively, P = 0.005) and mortality (3% vs. 1.4%, in males and females, respectively, P = 0.004) than female patients. Survival analysis revealed that the male sex is an independent risk factor for death from COVID-19 (adjusted hazard ratio [HR] = 2.22, 95% confidence interval [CI]: 1.3-3.6, P = 0.003). The level of inflammatory cytokines in peripheral blood was higher in males during hospitalization. The renal (102/1588 [6.5%] vs. 63/1499 [4.2%], in males and females, respectively, P = 0.002) and hepatic abnormality (650/1588 [40.9%] vs. 475/1499 [31.7%], P = 0.003) were more common in male patients than in female patients. By analyzing dynamic changes of lymphocyte subsets after symptom onset, we found that the percentage of CD19+ B cells and CD4+ T cells was generally higher in female patients during the disease course of COVID-19. Notably, the protective RBD-specific IgG against SARS-CoV-2 sharply increased and reached a peak in the fourth week after symptom onset in female patients, while gradually increased and reached a peak in the seventh week after symptom onset in male patients. CONCLUSIONS: Males had an unfavorable prognosis, higher inflammation, a lower percentage of lymphocytes, and indolent antibody responses during SARS-CoV-2 infection and recovery. Early medical intervention and close monitoring are important, especially for male COVID-19 patients.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Aged , Antibody Formation , Female , Humans , Immunoglobulin G/blood , Lymphocyte Subsets/immunology , Male , Middle Aged , Sex Characteristics
20.
Viruses ; 13(8)2021 07 30.
Article in English | MEDLINE | ID: covidwho-1335234

ABSTRACT

The development of rapid serological detection methods re urgently needed for determination of neutralizing antibodies in sera. In this study, four rapid methods (ACE2-RBD inhibition assay, S1-IgG detection, RBD-IgG detection, and N-IgG detection) were established and evaluated based on chemiluminescence technology. For the first time, a broadly neutralizing antibody with high affinity was used as a standard for the quantitative detection of SARS-CoV-2 specific neutralizing antibodies in human sera. Sera from COVID-19 convalescent patients (N = 119), vaccinated donors (N = 86), and healthy donors (N = 299) confirmed by microneutralization test (MNT) were used to evaluate the above methods. The result showed that the ACE2-RBD inhibition assay calculated with either ACE2-RBD binding inhibition percentage rate or ACE2-RBD inhibiting antibody concentration were strongly correlated with MNT (r ≥ 0.78, p < 0.0001) and also highly consistent with MNT (Kappa Value ≥ 0.94, p < 0.01). There was also a strong correlation between the two evaluation indices (r ≥ 0.99, p < 0.0001). Meanwhile, S1-IgG and RBD-IgG quantitative detection were also significantly correlated with MNT (r ≥ 0.73, p < 0.0001), and both methods were highly correlated with each other (r ≥ 0.95, p < 0.0001). However, the concentration of N-IgG antibodies showed a lower correlation with the MNT results (r < 0.49, p < 0.0001). The diagnostic assays presented here could be used for the evaluation of SARS-CoV-2 vaccine immunization effect and serological diagnosis of COVID-19 patients, and could also have guiding significance for establishing other rapid serological methods to surrogate neutralization tests for SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19 Vaccines/immunology , COVID-19/virology , Immunoassay/methods , Luminescent Measurements/methods , SARS-CoV-2/immunology , COVID-19/blood , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Serological Testing/instrumentation , COVID-19 Vaccines/administration & dosage , Humans , SARS-CoV-2/genetics , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...