Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Frontiers in public health ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-1824584

ABSTRACT

Objectives Attenuated humoral response to mRNA SARS-CoV-2 vaccines has been reported in some patients with autoimmune disease, e.g., rheumatoid arthritis (RA). However, data of immune responses to inactivated SARS-CoV-2 vaccine in the RA population are still unknown. Herein, the safety and immunogenicity of inactivated SARS-CoV-2 vaccines in RA patients were analyzed. Methods Seventy five RA patients and 26 healthy controls (HC) were respectively recruited from Yunnan Provincial Hospital of Traditional Chinese Medicine and the community in Kunming city. Neutralizing Antibody (NAb) Test ELISA kit was used to measure the percentage of inhibition. AKA (anti-keratin antibody) positivity was detected using indirect immunofluorescence. Rheumatoid factor (RF)-IgA was detected by ELISA. RF-IgG, RF-IgM, and anti-cyclic citrullinated peptide (CCP) antibodies were measured by chemiluminescence. ESR (erythrocyte sedimentation rate) was detected by ESR analyzer. C-RP (c-reactive protein) was detected by immunoturbidimetry. NEUT% (percentage of neutrophils) and LYMPH% (percentage of percentage) were calculated by a calculation method. Results Compared with the HC group, the percentage of inhibition was significantly lower in RA patients receiving two doses of vaccines. Vaccines-induced percentage of inhibition was the lowest in RA patients who had not been vaccinated. In total 80.77% of the HC group had a percentage of inhibition ≧20%, compared with 45.24% of vaccinated RA patients and 6.06% of unvaccinated RA patients. Spearman correlation analysis revealed that antibody responses to SARS-CoV-2 did not differ between RA patients according to their age and disease duration. Furthermore, the results showed that no correlation was found between the percentage of inhibition and indices for RA, including RF-IgA, IgG, IgM;anti-CCP antibody;ESR;C-RP;NEUT% and LYMPH%. Conclusion Our study showed inactivated vaccine-induced SARS-COV-2 antibody responses differ in RA patients and healthy subjects, emphasizing the importance of a third or fourth vaccination in RA patients.

2.
J Tradit Complement Med ; 12(1): 73-89, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1814844

ABSTRACT

BACKGROUND AND AIM: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters cells through the binding of the viral spike protein with human angiotensin-converting enzyme 2 (ACE2), resulting in the development of coronavirus disease 2019 (COVID-19). To date, few antiviral drugs are available that can effectively block viral infection. This study aimed to identify potential natural products from Taiwan Database of Extracts and Compounds (TDEC) that may prevent the binding of viral spike proteins with human ACE2 proteins. METHODS: The structure-based virtual screening was performed using the AutoDock Vina program within PyRX software, the binding affinities of compounds were verified using isothermal titration calorimetry (ITC), the inhibitions of SARS-CoV-2 viral infection efficacy were examined by lentivirus particles pseudotyped (Vpp) infection assay, and the cell viability was tested by 293T cell in MTT assay. RESULTS AND CONCLUSION: We identified 39 natural products targeting the viral receptor-binding domain (RBD) of the SARS-CoV-2 spike protein in silico. In ITC binding assay, dioscin, celastrol, saikosaponin C, epimedin C, torvoside K, and amentoflavone showed dissociation constant (K d) = 0.468 µM, 1.712 µM, 6.650 µM, 2.86 µM, 3.761 µM and 4.27 µM, respectively. In Vpp infection assay, the compounds have significantly and consistently inhibition with the 50-90% inhibition of viral infection efficacy. In cell viability, torvoside K, epimedin, amentoflavone, and saikosaponin C showed IC50 > 100 µM; dioscin and celastrol showed IC50 = 1.5625 µM and 0.9866 µM, respectively. These natural products may bind to the viral spike protein, preventing SARS-CoV-2 from entering cells. SECTION 1: Natural Products. TAXONOMY CLASSIFICATION BY EVISE: SARS-CoV-2, Structure-Based Virtual Screening, Isothermal Titration Calorimetry and Lentivirus Particles Pseudotyped (Vpp) Infection Assay, in silico and in vitro study.

3.
Annals of Tourism Research ; 94:103402, 2022.
Article in English | ScienceDirect | ID: covidwho-1783169

ABSTRACT

This paper proposes a new foresight approach to estimate the impact of public health emergencies on hotel demand. The forecasting-based influence evaluation consists of four modules: decomposing hotel demand before an emergency, matching each decomposed component to a forecasting model, combining the predictions as the expected demand after the emergency, and estimating the impact by comparing actual demand against that predicted. The method is applied to analyze the impact of COVID-19 on Macao's hotel industry. The empirical results show that: 1) the new approach accurately estimates COVID-19's impact on hotel demand;2) the seasonal and industry development components contribute significantly to the estimate of expected demand;3) COVID-19's impact is heterogeneous across hotel services.

4.
Nature ; 2022 Mar 07.
Article in English | MEDLINE | ID: covidwho-1730298

ABSTRACT

Critical Covid-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalisation2-4 following SARS-CoV-2 infection. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from critically-ill cases with population controls in order to find underlying disease mechanisms. Here, we use whole genome sequencing in 7,491 critically-ill cases compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical Covid-19. We identify 16 new independent associations, including variants within genes involved in interferon signalling (IL10RB, PLSCR1), leucocyte differentiation (BCL11A), and blood type antigen secretor status (FUT2). Using transcriptome-wide association and colocalisation to infer the effect of gene expression on disease severity, we find evidence implicating multiple genes, including reduced expression of a membrane flippase (ATP11A), and increased mucin expression (MUC1), in critical disease. Mendelian randomisation provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5, CD209) and coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of Covid-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication, or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between critically-ill cases and population controls is highly efficient for detection of therapeutically-relevant mechanisms of disease.

5.
mBio ; : e0287521, 2022 Feb 15.
Article in English | MEDLINE | ID: covidwho-1688867

ABSTRACT

Bats are well-recognized reservoirs of zoonotic viruses. Several spillover events from bats to humans have been reported, causing severe epidemic or endemic diseases including severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), SARS-CoV, Middle East respiratory syndrome-CoV (MERS-CoV), henipaviruses, and filoviruses. In this study, a novel rhabdovirus species, provisionally named Rhinolophus rhabdovirus DPuer (DPRV), was identified from the horseshoe bat (Rhinolophus affinis) in Yunnan province, China, using next-generation sequencing. DPRV shedding in the spleen, liver, lung, and intestinal contents of wild bats with high viral loads was detected by real-time quantitative PCR, indicating that DPRV has tropism for multiple host tissues. Furthermore, DPRV can replicate in vitro in multiple mammalian cell lines, including BHK-21, A549, and MA104 cells, with the highest efficiency in hamster kidney cell line BHK-21, suggesting infectivity of DPRV in these cell line-derived hosts. Ultrastructure analysis revealed a characteristic bullet-shaped morphology and tightly clustered distribution of DPRV particles in the intracellular space. DPRV replicated efficiently in suckling mouse brains and caused death of suckling mice; death rates increased with passaging of DPRV in suckling mice. Moreover, 421 serum samples were collected from individuals who lived near the bat collection site and had fever symptoms within 1 year. DPRV-specific antibodies were detected in 20 (4.75%) human serum samples by indirect immunofluorescence assay. Furthermore, 10 (2.38%) serum samples were DPRV positive according to plaque reduction neutralization assay, which revealed potential transmission of DPRV from bats to humans and highlighted the potential public health risk. Potential vector association with DPRV was not found with negative viral RNA in bloodsucking arthropods. IMPORTANCE We identified a novel rhabdovirus from the horseshoe bat (Rhinolophus thomasi) in China with probable infectivity in humans. DPRV was isolated in vitro from several mammalian cell lines, indicating wide host tropism, excluding bats, of DPRV. DPRV replicated in the brains of suckling mice, and the death rate of suckling mice increased with passaging of DPRV in vivo. Serological tests indicated the possible infectivity of DPRV in humans and the potential transmission to humans. The present findings provide preliminary evidence for the potential risk of DPRV to public health. Additional studies with active surveillance are needed to address interspecies transmission and determine the pathogenicity of DPRV in humans.

6.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-323881

ABSTRACT

Discharged COVID-19 patients have been found to be retested positive for SARS-CoV-2 (re-positive), which has widely raised concern among the public. We investigated the prevalence and transmission risk of re-positive cases in discharged COVID-19 patients and their SARS-CoV-2-specific antibody levels in Wuhan, China. Of 1065 discharged COVID-19 patients investigated, 518 (48.64%) patients were males;the mean age was 53.29 ± 14.91 years, with a median duration of 40 (IQR: 31–47) days since discharge. 63 patients were tested re-positive for SARS-CoV-2, with the re-positive prevalence to be 5.92% (95%CI: 4.50%-7.33%). The re-positive prevalence was higher in females (7.86%, 95%CI: 5.61%-10.12%) than that in males (3.86%, 95%CI: 2.20%-5.52%, P  = 0.006). Re-positive prevalence was similar in patients tested positive and negative for IgG (6.01% vs 5.56%, P  = 0.821) or IgM (6.38% vs 5.07%, P  = 0.394). Illness severity and duration from illness onset to retest were not associated with the risk of positive results for SARS-CoV-2 after discharge. All 196 environmental samples collected from 49 re-positive patients were tested negative for SAR-CoV-2. Only one close contact to the re-positive patient had been tested positive for SARS-CoV-2;however, he might be a previous COVID-19 case but had not been detected before. Viral culture of 6 nasopharyngeal specimens presented no cytopathic effect of Vero E6 cells. Virus sequencing of 11 nasopharyngeal specimens indicated genomic fragments of SARS-CoV-2. 898 (84.72%) patients and 705 (66.51%) patients were tested positive for SARS-CoV-2-specific IgG and IgM, respectively. Self-report symptoms at the survey were similar, regardless of the level of antibody. All the re-positive patients and their matched non-re-positive patients were tested negative for SARS-CoV-2 four months later. These findings indicate that Testing re-positive of SARS-CoV-2 is common in discharged COVID-19 patients, but no evidence showed the transmission risk of these re-positive cases. Further isolation of recovered COVID-19 patients is unnecessary. However, only 85% recovered COVID-19 patients had SARS-CoV-2-specific antibody, which suggested discharged COVID-19 patients still had potential re-infection risk.

7.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-313429

ABSTRACT

Accumulating mutations on SARS-CoV-2 Spike (S) protein may increase the possibility of immune escape, challenging the present COVID-19 prophylaxis and clinical interventions. Here, in a panel of receptor binding domain (S-RBD) specific monoclonal antibodies (mAbs) with high neutralizing potency against authentic SARS-CoV-2, at least 6 of them were found to efficiently block the pseudovirus of 501Y.V2, a highly transmissible SARS-CoV-2 variant with escape mutations. The top 3 neutralizing Abs (13G9, 58G6 and 510A5) exhibited comparative ultrapotency as those being actively pursued for clinical development. Interestingly, the antigenic sites for the majority of our neutralizing Abs overlapped with a single epitope (13G9e) on S-RBD. Further, the 3-dimensional structures of 2 ultrapotent neutralizing Abs 13G9 or 58G6 in complex with SARS-CoV-2 S trimer demonstrated that both Abs bound to a steric region within S 472–490 . Moreover, a specific linear region (S 450–457 ) was identified as an additional target for 58G6. Importantly, our cryo-electron microscopy (cryo-EM) analysis revealed a unique phenomenon that the S-RBDs interacting with the fragments of antigen binding (Fabs) of 13G9 or 58G6 encoded by the IGHV1-58 and the IGKV3-20 gene segments were universally in the ‘up’ conformation in all observed particles. The potent neutralizing Abs presented in the current study may be promising candidates to fulfill the urgent needs for the current pandemic of SARS-CoV-2, and may of fundamental value for the next-generation vaccine development.

8.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-311951

ABSTRACT

After the epidemic of COVID-19, neutralizing antibodies (NAbs) against SARS-CoV-2 has been developed for the preventative and therapeutic purposes. However, few methodologies are reported in detail on how to rapidly and efficiently generate NAbs of interest. Here, we present a strategically optimized screening method for NAbs, which has enabled us to obtain SARS-CoV-2 receptor-binding domain (RBD) specific monoclonal Abs within 4 days, followed by additional 2 days to evaluate their neutralizing activities. Using this method, we obtained 198 specific Abs against SARS-CoV-2 RBD from the blood samples of COVID-19 convalescent patients, and 96 of them showed neutralizing activity. At least 20% of these NAbs exhibited high neutralizing potency. The top 2 NAbs showed the half-maximal inhibitory concentration (IC50) to block authentic SARS-CoV-2 at 9.88 and 11.13 ng/ml, respectively. Altogether, our study provides a fundamental methodology for discovering NAbs with potential preventative and therapeutic value for emerging infectious diseases.

9.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-307716

ABSTRACT

Background: In December 2019, a cluster of patients associated with a seafood wholesale market was confirmed having infected the 2019 novel coronavirus (2019-nCoV) in Wuhan, China. As of Feb 11, 2020, 43144 cases of the 2019-nCoV infection have been confirmed in the world, and person-to-person transmission has been recognized. To our knowledge, there are no reports regarding the 2019-nCoV pneumonia infected by cluster transmission within a family. The amount of close contact suspect was increasing. We reported cases of family cluster transmission of the 2019-nCoV infection, showing the differences in computed tomography (CT) manifestations and symptoms between patients with and without history of exposure to the epidemic area (Wuhan). Case Presentation: A 48-year-old man was presented to the hospital in Jan 30, 2020 with a 2-day history of low fever and chill. He had traveled to Wuhan City of Hubei Province of China 12 days before, and was confirmed having the 2019-nCoV infection based on his positive CT manifestations, clinical signs, and real-time fluorescence polymerase chain reaction results. The other three members of his family without history of exposure to the epidemic area (Wuhan) were subsequently identified having the 2019-nCoV transmissive infection based on the positive findings of real-time fluorescence polymerase chain reaction, but they did not have abnormal CT manifestations and clinical signs. Conclusion: For patients who have history of exposure to the epidemic area (Wuhan), the 2019-nCoV infected pneumonia can be identified by real-time fluorescence polymerase chain reaction testing and chest CT together with the symptoms. But for patients without exposure to the epidemic area, the 2019-nCoV infection can be confirmed by real-time fluorescence polymerase chain reaction testing and history of close contact with confirmed patients who have history of exposure to the epidemic area.

10.
Qualitative Social Work ; : 1, 2022.
Article in English | Academic Search Complete | ID: covidwho-1673832

ABSTRACT

The ongoing COVID-19 pandemic has motivated social workers to reckon with and transform traditions in service delivery. The development, application, and evaluation of technology-enhanced practices have become more vital than ever. Garden on the Balcony (GOB) was an innovative internet-based social work service designed to respond rapidly to the COVID-19 outbreak in Beijing. This paper introduces the underlying perspectives and design of GOB and reports participants’ reflections on the program to understand its mechanisms and implications. Interview data from GOB participants were collected 4 months after the program ended. Thematic analysis generated three major themes, suggesting that GOB had (a) promoted individual resilience and family cohesion;(b) built online and offline community bonds;and (c) cultivated a green lifestyle and spiritual reflection on life. This study demonstrates a practical example of the effective use of technology-enhanced practice. [ FROM AUTHOR] Copyright of Qualitative Social Work is the property of Sage Publications, Ltd. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

12.
Vet Microbiol ; 264: 109299, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1559479

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an emerging porcine enteric coronavirus that causes severe diarrhea in piglets and results in serious economic losses. There are no effective vaccines and antiviral drugs to prevent and treat PDCoV infection currently. Griffithsin (GRFT) is a lectin with potent antiviral activity against enveloped viruses because of its ability to specifically bind N-linked high-mannose oligosaccharides. GRFT has been reported to possess antiviral activity against severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and porcine epidemic diarrhea virus (PEDV). Here, we first confirmed the antiviral activity of GRFT against PDCoV in vitro. The infected cells (%) and virus titers were significantly decreased at concentration 1 µg/mL or above of GRFT. Time-course experiments revealed that GRFT inhibits PDCoV infection at the adsorption and penetration step. GRFT binding to PDCoV spike (S) protein on the surface wraps the virus and blocks its entry. The outstanding antiviral potency indicates that GRFT has the potential value as a candidate drug for the prevention and treatment of PDCoV infection.


Subject(s)
Deltacoronavirus , Plant Lectins , Animals , Antiviral Agents/pharmacology , Cell Culture Techniques/veterinary , Coronavirus Infections/drug therapy , Coronavirus Infections/veterinary , Deltacoronavirus/drug effects , Plant Lectins/pharmacology , Swine , Swine Diseases/drug therapy
13.
Front Psychol ; 12: 734398, 2021.
Article in English | MEDLINE | ID: covidwho-1528855

ABSTRACT

Online data collection methods are expanding the ease and access of developmental research for researchers and participants alike. While its popularity among developmental scientists has soared during the COVID-19 pandemic, its potential goes beyond just a means for safe, socially distanced data collection. In particular, advances in video conferencing software has enabled researchers to engage in face-to-face interactions with participants from nearly any location at any time. Due to the novelty of these methods, however, many researchers still remain uncertain about the differences in available approaches as well as the validity of online methods more broadly. In this article, we aim to address both issues with a focus on moderated (synchronous) data collected using video-conferencing software (e.g., Zoom). First, we review existing approaches for designing and executing moderated online studies with young children. We also present concrete examples of studies that implemented choice and verbal measures (Studies 1 and 2) and looking time (Studies 3 and 4) across both in-person and online moderated data collection methods. Direct comparison of the two methods within each study as well as a meta-analysis of all studies suggest that the results from the two methods are comparable, providing empirical support for the validity of moderated online data collection. Finally, we discuss current limitations of online data collection and possible solutions, as well as its potential to increase the accessibility, diversity, and replicability of developmental science.

14.
Nat Commun ; 12(1): 6304, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1500462

ABSTRACT

Accumulating mutations in the SARS-CoV-2 Spike (S) protein can increase the possibility of immune escape, challenging the present COVID-19 prophylaxis and clinical interventions. Here, 3 receptor binding domain (RBD) specific monoclonal antibodies (mAbs), 58G6, 510A5 and 13G9, with high neutralizing potency blocking authentic SARS-CoV-2 virus display remarkable efficacy against authentic B.1.351 virus. Surprisingly, structural analysis has revealed that 58G6 and 13G9 both recognize the steric region S470-495 on the RBD, overlapping the E484K mutation presented in B.1.351. Also, 58G6 directly binds to another region S450-458 in the RBD. Significantly, 58G6 and 510A5 both demonstrate prophylactic efficacy against authentic SARS-CoV-2 and B.1.351 viruses in the transgenic mice expressing human ACE2 (hACE2), protecting weight loss and reducing virus loads. Together, we have evidenced 2 potent neutralizing Abs with unique mechanism targeting authentic SARS-CoV-2 mutants, which can be promising candidates to fulfill the urgent needs for the prolonged COVID-19 pandemic.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/chemistry , Antibodies, Viral/administration & dosage , Antibodies, Viral/chemistry , Binding Sites , COVID-19/pathology , COVID-19/virology , Epitopes , Humans , Mice , Mice, Transgenic , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Viral Load/drug effects , Weight Loss/drug effects
15.
Evid Based Complement Alternat Med ; 2021: 4303380, 2021.
Article in English | MEDLINE | ID: covidwho-1455773

ABSTRACT

BACKGROUND: In view of the global efforts to develop effective treatments for the current worldwide coronavirus 2019 (COVID-19) pandemic, Qingfei Paidu decoction (QPD), a novel traditional Chinese medicine (TCM) prescription, was formulated as an optimized combination of constituents of classic prescriptions used to treat numerous febrile and respiratory-related diseases. This prescription has been used to treat patients with COVID-19 pneumonia in Wuhan, China. Hypothesis/Purpose. We hypothesized that QPD would have beneficial effects on patients with COVID-19. We aimed to prove this hypothesis by evaluating the efficacy of QPD in patients with COVID-19 pneumonia. METHODS: In this single-center, retrospective, observational study, we identified eligible participants who received a laboratory diagnosis of COVID-19 between January 15 and March 15, 2020, in the west campus of Union Hospital in Wuhan, China. QPD was supplied as an oral liquid packaged in 200-mL containers, and patients were orally administered one package twice daily 40 minutes after a meal. The primary outcome was death, which was compared between patients who did and did not receive QPD (QPD and NoQPD groups, respectively). Propensity score matching (PSM) was used to identify cohorts. RESULTS: In total, 239 and 522 participants were enrolled in the QPD and NoQPD groups, respectively. After PSM at a 1 : 1 ratio, 446 patients meeting the criteria were included in the analysis with 223 in each arm. In the QPD and NoQPD groups, 7 (3.2%) and 29 (13.0%) patients died, and those in the QPD group had a significantly lower risk of death (hazard ratio (HR) 0.29, 95% CI: 0.13-0.67) than those in the NoQPD group (p = 0.004). Furthermore, the survival time was significantly longer in the QPD group than in the NoQPD group (p < 0.001). CONCLUSION: The use of QPD may reduce the risk of death in patients with COVID-19 pneumonia.

16.
Front Psychiatry ; 12: 686177, 2021.
Article in English | MEDLINE | ID: covidwho-1450841

ABSTRACT

Background: Since the Coronavirus disease 2019 (COVID-19) pandemic emerged, Internet usage has increased among adolescents. Due to this trend, the prevalence of Internet addiction disorder (IAD) may have increased within this group. This study examined the prevalence of IAD and its correlates among clinically stable adolescents with psychiatric disorders in China during the COVID-19 outbreak. Method: A multi-center, cross-sectional study was carried out between April 29 and June 9, 2020 in three major tertiary mental health centers in China. IAD and depressive symptoms were assessed using the Internet Addiction Test (IAT) and the 9-item Patient Health Questionnaire (PHQ-9), respectively. Results: A total of 1,454 adolescent psychiatric patients were included in final analyses. The prevalence of IAD was 31.2% (95% CI: 28.8-33.6%) during the COVID-19 pandemic. A multiple logistic regression analysis revealed that poor relationships with parents (P < 0.001, OR = 2.34, 95%CI: 1.49-3.68) and elevated total PHQ-9 scores (P < 0.001, OR = 1.19, 95%CI: 1.16-1.21) were significantly associated with higher risk for IAD while longer daily physical exercise durations (P = 0.04, OR = 0.67, 95%CI: 0.46-0.98) and rural residence (P = 0.003, OR = 0.62, 95%CI: 0.46-0.85) were significant correlates of lower risk for IAD. Conclusions: IAD was common among adolescent patients with clinically stable psychiatric disorders during the COVID-19 pandemic; regular physical exercise, healthy relationships with parents and fewer symptoms of depression were associated with lower risk within this population.

17.
J Tradit Complement Med ; 12(1): 73-89, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1433611

ABSTRACT

BACKGROUND AND AIM: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters cells through the binding of the viral spike protein with human angiotensin-converting enzyme 2 (ACE2), resulting in the development of coronavirus disease 2019 (COVID-19). To date, few antiviral drugs are available that can effectively block viral infection. This study aimed to identify potential natural products from Taiwan Database of Extracts and Compounds (TDEC) that may prevent the binding of viral spike proteins with human ACE2 proteins. METHODS: The structure-based virtual screening was performed using the AutoDock Vina program within PyRX software, the binding affinities of compounds were verified using isothermal titration calorimetry (ITC), the inhibitions of SARS-CoV-2 viral infection efficacy were examined by lentivirus particles pseudotyped (Vpp) infection assay, and the cell viability was tested by 293T cell in MTT assay. RESULTS AND CONCLUSION: We identified 39 natural products targeting the viral receptor-binding domain (RBD) of the SARS-CoV-2 spike protein in silico. In ITC binding assay, dioscin, celastrol, saikosaponin C, epimedin C, torvoside K, and amentoflavone showed dissociation constant (K d) = 0.468 µM, 1.712 µM, 6.650 µM, 2.86 µM, 3.761 µM and 4.27 µM, respectively. In Vpp infection assay, the compounds have significantly and consistently inhibition with the 50-90% inhibition of viral infection efficacy. In cell viability, torvoside K, epimedin, amentoflavone, and saikosaponin C showed IC50 > 100 µM; dioscin and celastrol showed IC50 = 1.5625 µM and 0.9866 µM, respectively. These natural products may bind to the viral spike protein, preventing SARS-CoV-2 from entering cells. SECTION 1: Natural Products. TAXONOMY CLASSIFICATION BY EVISE: SARS-CoV-2, Structure-Based Virtual Screening, Isothermal Titration Calorimetry and Lentivirus Particles Pseudotyped (Vpp) Infection Assay, in silico and in vitro study.

18.
Sci Bull (Beijing) ; 66(9): 925-936, 2021 May 15.
Article in English | MEDLINE | ID: covidwho-1386590

ABSTRACT

The SARS-CoV-2 infection is spreading rapidly worldwide. Efficacious antiviral therapeutics against SARS-CoV-2 is urgently needed. Here, we discovered that protoporphyrin IX (PpIX) and verteporfin, two Food and Drug Administration (FDA)-approved drugs, completely inhibited the cytopathic effect produced by SARS-CoV-2 infection at 1.25 µmol/L and 0.31 µmol/L, respectively, and their EC50 values of reduction of viral RNA were at nanomolar concentrations. The selectivity indices of PpIX and verteporfin were 952.74 and 368.93, respectively, suggesting a broad margin of safety. Importantly, PpIX and verteporfin prevented SARS-CoV-2 infection in mice adenovirally transduced with human angiotensin-converting enzyme 2 (ACE2). The compounds, sharing a porphyrin ring structure, were shown to bind viral receptor ACE2 and interfere with the interaction between ACE2 and the receptor-binding domain of viral S protein. Our study suggests that PpIX and verteporfin are potent antiviral agents against SARS-CoV-2 infection and sheds new light on developing novel chemoprophylaxis and chemotherapy against SARS-CoV-2.

19.
Nutrients ; 13(8)2021 Aug 16.
Article in English | MEDLINE | ID: covidwho-1360797

ABSTRACT

Hesperidin (HD) is a common flavanone glycoside isolated from citrus fruits and possesses great potential for cardiovascular protection. Hesperetin (HT) is an aglycone metabolite of HD with high bioavailability. Through the docking simulation, HD and HT have shown their potential to bind to two cellular proteins: transmembrane serine protease 2 (TMPRSS2) and angiotensin-converting enzyme 2 (ACE2), which are required for the cellular entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our results further found that HT and HD suppressed the infection of VeroE6 cells using lentiviral-based pseudo-particles with wild types and variants of SARS-CoV-2 with spike (S) proteins, by blocking the interaction between the S protein and cellular receptor ACE2 and reducing ACE2 and TMPRSS2 expression. In summary, hesperidin is a potential TMPRSS2 inhibitor for the reduction of the SARS-CoV-2 infection.


Subject(s)
COVID-19/drug therapy , Hesperidin/chemistry , Hesperidin/pharmacology , SARS-CoV-2/drug effects , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/metabolism , COVID-19/virology , Cell Line, Tumor , Chlorocebus aethiops , Coronavirus Papain-Like Proteases/chemistry , Coronavirus Papain-Like Proteases/metabolism , Humans , Molecular Docking Simulation , SARS-CoV-2/metabolism , Serine Endopeptidases/chemistry , Serine Endopeptidases/drug effects , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
20.
J Wound Care ; 30(8): 594-597, 2021 Aug 02.
Article in English | MEDLINE | ID: covidwho-1355256

ABSTRACT

Given the current COVID-19 crisis, multiple clinical manifestations and related complications of COVID-19 disease, especially in lung transplant patients following post-COVID-19 pneumonia, are a major challenge. Herein, we report the therapeutic course of the first reported case of sacrococcyx pressure ulcers (PU) in a 65-year-old male COVID-19 patient who underwent lung transplantation and developed a PU following surgery. We used a combination of regulated negative pressure-assisted wound therapy system (RNPT, six treatment courses, five days per treatment course), a skin tension-relief system (an intraoperative aid in minimising wounds caused by sacrococcygeal PUs) and a gluteus maximus myocutaneous flap to repair sacrococcygeal wounds. This successfully treated case provides a reference point for the treatment of similar cases.


Subject(s)
COVID-19 , Lung Transplantation , Pressure Ulcer , Aged , Humans , Male , SARS-CoV-2 , Surgical Flaps
SELECTION OF CITATIONS
SEARCH DETAIL