Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-335633

ABSTRACT

Golden Syrian hamsters ( Mesocricetus auratus ) are used as a research model for severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). Millions of Golden Syrian hamsters are also kept as pets in close contact to humans. To determine the minimum infective dose (MID) for assessing the zoonotic transmission risk, and to define the optimal infection dose for experimental studies, we orotracheally inoculated hamsters with SARS-CoV-2 doses from 1*10 5 to 1*10 −4 tissue culture infectious dose 50 (TCID 50 ). Body weight and virus shedding were monitored daily. 1*10 −3 TCID 50 was defined as the MID, and this was still sufficient to induce virus shedding at levels up to 10 2.75 TCID 50 /ml, equaling the estimated MID for humans. Virological and histological data revealed 1*10 2 TCID 50 as the optimal dose for experimental infections. This compellingly high susceptibility resulting in productive infections in Golden Syrian hamsters needs to be considered also as a source of SARS-CoV-2 infections in humans.

2.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-335222

ABSTRACT

Variant of concern (VOC) Omicron-BA1 has achieved global predominance in early 2022. Therefore, surveillance and comprehensive characterization of Omicron-BA.1 in advanced primary cell culture systems and multiple animal models is urgently needed. Here, we characterized Omicron-BA.1 and recombinant Omicron-BA.1 spike gene mutants in comparison with VOC Delta in well-differentiated primary human nasal and bronchial epithelial cells in vitro, followed by in vivo fitness characterization in naïve hamsters, ferrets and hACE2-expressing mice, and in immunized hACE2-mice. We demonstrate a spike-mediated enhancement of early replication of Omicron-BA.1 in nasal epithelial cultures, but limited replication in bronchial epithelial cultures. In Syrian hamsters, Delta showed dominance over Omicron-BA.1 and in ferrets, Omicron-BA.1 infection was abortive. In mice expressing the authentic hACE2-receptor, Delta and a Delta spike clone also showed dominance over Omicron-BA.1 and an Omicron-BA.1 spike clone, respectively. Interestingly, in naïve K18-hACE2 mice, we observed Delta spike-mediated increased replication and pathogenicity and Omicron-BA.1 spike-mediated reduced replication and pathogenicity, suggesting that the spike gene is a major determinant of both Delta and Omicron-BA.1 replication and pathogenicity. Finally, the Omicron-BA.1 spike clone was less well controlled by mRNA-vaccination in K18-hACE2-mice and became more competitive compared to the progenitor and Delta spike clones, suggesting that spike gene-mediated immune evasion is another important factor that led to Omicron-BA.1 dominance.

3.
Mod Pathol ; 35(8): 1013-1021, 2022 08.
Article in English | MEDLINE | ID: covidwho-1773954

ABSTRACT

The rate of SARS-CoV-2 infections in vaccinees has become a relevant serious issue. This study aimed to determine the causes of death, histological organ alteration, and viral spread in relation to demographic, clinical-pathological, viral variants, and vaccine types for deceased individuals with proven SARS-CoV-2 infection after vaccination who died between January and November 2021. Twenty-nine consecutively collected cases were analyzed and compared to 141 nonvaccinated control cases. Autopsies were performed on 16 partially and 13 fully vaccinated individuals. Most patients were elderly and suffered from several relevant comorbidities. Real-time RT-PCR (RT-qPCR) identified a significantly increased rate of generalized viral dissemination within organ systems in vaccinated cases versus nonvaccinated cases (45% vs. 16%, respectively; P = 0.008) mainly with Ct-values of higher than 25 in non-respiratory samples. However, vaccinated cases also showed high viral loads, reaching Ct-values below 10, especially in the upper airways and lungs. This was accompanied by high rates of pulmonal bacterial or mycotic superinfections and the occurrence of immunocompromising factors, such as malignancies, immunosuppressive drug intake, or decreased immunoglobulin levels. All these findings were particularly accentuated in partially vaccinated patients compared to fully vaccinated individuals. The virus dissemination observed in our case study may indicate that patients with an impaired immune system have a decreased ability to eliminate the virus. However, the potential role of antibody-dependent enhancement must also be ruled out in future studies. Fatal cases of COVID-19 in vaccinees were rare and often associated with severe comorbidities or other immunosuppressive conditions.


Subject(s)
COVID-19 , Aged , Autopsy , Humans , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Viral Load
4.
Nature ; 602(7896): 307-313, 2022 02.
Article in English | MEDLINE | ID: covidwho-1585832

ABSTRACT

Emerging variants of concern (VOCs) are driving the COVID-19 pandemic1,2. Experimental assessments of replication and transmission of major VOCs and progenitors are needed to understand the mechanisms of replication and transmission of VOCs3. Here we show that the spike protein (S) from Alpha (also known as B.1.1.7) and Beta (B.1.351) VOCs had a greater affinity towards the human angiotensin-converting enzyme 2 (ACE2) receptor than that of the progenitor variant S(D614G) in vitro. Progenitor variant virus expressing S(D614G) (wt-S614G) and the Alpha variant showed similar replication kinetics in human nasal airway epithelial cultures, whereas the Beta variant was outcompeted by both. In vivo, competition experiments showed a clear fitness advantage of Alpha over wt-S614G in ferrets and two mouse models-the substitutions in S were major drivers of the fitness advantage. In hamsters, which support high viral replication levels, Alpha and wt-S614G showed similar fitness. By contrast, Beta was outcompeted by Alpha and wt-S614G in hamsters and in mice expressing human ACE2. Our study highlights the importance of using multiple models to characterize fitness of VOCs and demonstrates that Alpha is adapted for replication in the upper respiratory tract and shows enhanced transmission in vivo in restrictive models, whereas Beta does not overcome Alpha or wt-S614G in naive animals.


Subject(s)
COVID-19/transmission , COVID-19/virology , Mutation , SARS-CoV-2/classification , SARS-CoV-2/physiology , Virus Replication , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Animals, Laboratory/virology , COVID-19/veterinary , Cricetinae , Disease Models, Animal , Epithelial Cells/virology , Female , Ferrets/virology , Humans , Male , Mesocricetus/virology , Mice , Mice, Transgenic , SARS-CoV-2/genetics , SARS-CoV-2/growth & development , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virulence/genetics
5.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-294937

ABSTRACT

Background: The rate of SARS-CoV-2 breakthrough infections in vaccinees is becoming an increasingly serious issue. Objective: To determine the causes of death, histological organ alteration, and viral spread in relation to demographic, clinical-pathological, viral variants, and vaccine types. Design: Comprehensive retrospective observational cohort study. Setting: Consecutive cases from four German academic medical centers. Patients: Deceased with proven SARS-CoV-2 infection after vaccination who died between January and November 2021. Collections of 29 vaccinees which were analyzed and compared to 141 nonvaccinated control cases. Results: Autopsies were performed on 16 partially and 13 fully vaccinated individuals. Most patients were elderly and suffered from several relevant comorbidities. Real-time RT-PCR (RT-qPCR) identified a significantly increased rate of generalized viral dissemination within the organism in vaccinated cases versus nonvaccinated cases (45% vs. 16%, respectively;P = 0.008). Vaccinated cases also showed high viral loads, reaching Ct values below 10, especially in the upper airways and lungs. This was accompanied by high rates of pulmonal bacterial or mycotic superinfections and the occurrence of immunocompromising factors such as malignancies, immunosuppressive drug intake, or decreased immunoglobulin levels. All these findings were particularly accentuated in partially vaccinated patients compared to fully vaccinated individuals. A fatal course after vaccination occurred in only 14% of all COVID-19 deceased in Augsburg. Limitations: Restricted number of cases Conclusions: Fatal cases of COVID-19 in vaccinees were rare and often associated with severe comorbidities or other immunosuppressive conditions. Interestingly, we observed striking virus dissemination in our case study, which may indicate a decreased ability to eliminate the virus in patients with an impaired immune system. However, the potential role of antibody-dependent enhancement must also be ruled out in future studies.

6.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-293969

ABSTRACT

Background: A novel zoonotic SARS-related coronavirus emerged in China at the end of 2019. The novel SARS-CoV-2 became pandemic within weeks and the number of human infections and severe cases is increasing. The role of potential animal hosts is still understudied.Methods: We intranasally inoculated fruit bats (Rousettus aegyptiacus;n=9), ferrets (n=9), pigs (n=9) and chickens (n=17) with 105 TCID50 of a SARS-CoV-2 isolate per animal. Animals were monitored clinically and for virus shedding. Direct contact animals (n=3) were included. Animals were humanely sacrificed for virological and immune-pathohistological analysis at different time points.Findings: Under these settings, pigs and chickens were not susceptible to SARS-CoV-2. All swabs as well as organ samples and contact animals remained negative for viral RNA, and none of the animals seroconverted. Rousettus aegyptiacus fruit bats experienced a transient infection, with virus detectable by RT-qPCR, immunohistochemistry (IHC) and in situ hybridization (ISH) in the nasal cavity, associated with rhinitis. Viral RNA was also identified in the trachea, lung and lung associated lymphatic tissue. One of three contact bats became infected. More efficient virus replication but no clinical signs were observed in ferrets with transmission to all direct contact animals. Prominent viral RNA loads of up to 104 viral genome copies/ml were detected in the upper respiratory tract. Mild rhinitis was associated with viral antigen detection in the respiratory and olfactory epithelium. Both fruit bats and ferrets developed SARS-CoV-2 reactive antibodies reaching neutralizing titers of up to 1:1024.Interpretation: Pigs and chickens could not be infected intranasally by SARS-CoV-2, whereas fruit bats showed characteristics of a reservoir host. Virus replication in ferrets resembled a subclinical human infection with efficient spread. These animals might serve as a useful model for further studies e.g. testing vaccines or antivirals.Funding Statement: Intramural funding of the German Federal Ministry of Food and Agriculture provided to the Friedrich-Loeffler-Institut.Declaration of Interests: All authors declare no competing interest.Ethics Approval Statement: The animal experiments were evaluated and approved by the ethics committee of the State Office of Agriculture, Food safety, and Fishery in Mecklenburg – Western Pomerania (LALLF M-V: LVL MV/TSD/7221.3-2-010/18-12). All procedures were carried out in approved biosafety level 3 (BSL3) facilities.

7.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-293536

ABSTRACT

Background: The rate of SARS-CoV-2 breakthrough infections in vaccinees is becoming an increasingly serious issue. Objective: To determine the causes of death, histological organ alteration, and viral spread in relation to demographic, clinical-pathological, viral variants, and vaccine types. Design: Comprehensive retrospective observational cohort study. Setting: Consecutive cases from four German academic medical centers. Patients: Deceased with proven SARS-CoV-2 infection after vaccination who died between January and November 2021. Collections of 29 vaccinees which were analyzed and compared to 141 nonvaccinated control cases. Results: Autopsies were performed on 16 partially and 13 fully vaccinated individuals. Most patients were elderly and suffered from several relevant comorbidities. Real-time RT-PCR (RT-qPCR) identified a significantly increased rate of generalized viral dissemination within the organism in vaccinated cases versus nonvaccinated cases (45% vs. 16%, respectively;P = 0.008). Vaccinated cases also showed high viral loads, reaching Ct values below 10, especially in the upper airways and lungs. This was accompanied by high rates of pulmonal bacterial or mycotic superinfections and the occurrence of immunocompromising factors such as malignancies, immunosuppressive drug intake, or decreased immunoglobulin levels. All these findings were particularly accentuated in partially vaccinated patients compared to fully vaccinated individuals. A fatal course after vaccination occurred in only 14% of all COVID-19 deceased in Augsburg. Limitations: Restricted number of cases Conclusions: Fatal cases of COVID-19 in vaccinees were rare and often associated with severe comorbidities or other immunosuppressive conditions. Interestingly, we observed striking virus dissemination in our case study, which may indicate a decreased ability to eliminate the virus in patients with an impaired immune system. However, the potential role of antibody-dependent enhancement must also be ruled out in future studies.

8.
Res Vet Sci ; 140: 229-232, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1401839

ABSTRACT

Several non-variant of concern SARS-CoV-2 infections in pets have been reported as documented in the OIE and GISAID databases and there is only one fully documented case of an alpha variant of concern (VOC)(B.1.1.7) in the United States so far. Here, we describe the first case in a cat infected with the alpha SARS-CoV-2 variant in Germany. A cat suffering from pneumonia was presented to a veterinary practice. The pneumonia was treated symptomatically, but 16 days later the cat was presented again. Since the owner had been tested positive for a SARS-CoV-2 infection in the meantime, swab samples were taken from the cat and analyzed for SARS-CoV-2 specific nucleic acids. The various RT-qPCR analyses and whole-genome sequencing revealed the presence of the SARS-CoV-2 B.1.1.7 variant in this cat. This study shows that pets living in close contact with SARS-CoV-2 B.1.1.7 infected owners can contract this virus and also suffer from a respiratory disease. It is not clear yet whether onward transmissions to other cats and humans can occur. To minimize transmission risks, pet owners and veterinarians should comply to the hygienic rules published by OIE and others. It must be stated, that infections of cats with SARS-CoV-2 is still a rare event. Cats with clinical signs of a respiratory disease should be presented to a veterinarian, who will decide on further steps.


Subject(s)
COVID-19 , Cat Diseases , Animals , COVID-19/veterinary , Cat Diseases/diagnosis , Cats , Germany , Humans , Real-Time Polymerase Chain Reaction/veterinary , SARS-CoV-2
9.
Diagn Microbiol Infect Dis ; 101(4): 115520, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1363963

ABSTRACT

Sample panels of SARS-CoV-2 cases were retrospectively whole-genome sequenced. In three individuals, samples of upper and lower respiratory tract resulted in identical sequences suggesting virus stability including the spike protein cleavage site. In a fourth case, low-level intra-host genomic evolution and a unique 5-nucleotide deletion was observed.


Subject(s)
Adaptation, Physiological/genetics , COVID-19/virology , Respiratory System/virology , SARS-CoV-2/isolation & purification , Whole Genome Sequencing , Genome, Viral , Humans , Retrospective Studies , Tissue Distribution
10.
PLoS One ; 16(7): e0254872, 2021.
Article in English | MEDLINE | ID: covidwho-1317145

ABSTRACT

BACKGROUND: COVID-19 is only partly understood, and the level of evidence available in terms of pathophysiology, epidemiology, therapy, and long-term outcome remains limited. During the early phase of the pandemic, it was necessary to effectively investigate all aspects of this new disease. Autopsy can be a valuable procedure to investigate the internal organs with special techniques to obtain information on the disease, especially the distribution and type of organ involvement. METHODS: During the first wave of COVID-19 in Germany, autopsies of 19 deceased patients were performed. Besides gross examination, the organs were analyzed with standard histology and polymerase-chain-reaction for SARS-CoV-2. Polymerase chain reaction positive localizations were further analyzed with immunohistochemistry and RNA-in situ hybridization for SARS-CoV-2. RESULTS: Eighteen of 19 patients were found to have died due to COVID-19. Clinically relevant histological changes were only observed in the lungs. Diffuse alveolar damage in considerably different degrees was noted in 18 cases. Other organs, including the central nervous system, did not show specific micromorphological alterations. In terms of SARS-CoV-2 detection, the focus remains on the upper airways and lungs. This is true for both the number of positive samples and the viral load. A highly significant inverse correlation between the stage of diffuse alveolar damage and viral load was found on a case and a sample basis. Mediastinal lymph nodes and fat were also affected by the virus at high frequencies. By contrast, other organs rarely exhibited a viral infection. Moderate to strong correlations between the methods for detecting SARS-CoV-2 were observed for the lungs and for other organs. CONCLUSIONS: The lung is the most affected organ in gross examination, histology and polymerase chain reaction. SARS-CoV-2 detection in other organs did not reveal relevant or specific histological changes. Moreover, we did not find CNS involvement.


Subject(s)
COVID-19/virology , Central Nervous System/virology , Lung/virology , Lymph Nodes/virology , Viral Load , Aged , Aged, 80 and over , Autopsy/statistics & numerical data , COVID-19/epidemiology , COVID-19/pathology , Central Nervous System/pathology , Female , Humans , Lung/pathology , Lymph Nodes/pathology , Male , Middle Aged
11.
Nat Commun ; 12(1): 4048, 2021 06 30.
Article in English | MEDLINE | ID: covidwho-1290662

ABSTRACT

The ongoing SARS-CoV-2 pandemic necessitates the fast development of vaccines. Recently, viral mutants termed variants of concern (VOC) which may escape host immunity have emerged. The efficacy of spike encoding mRNA vaccines (CVnCoV and CV2CoV) against the ancestral strain and the VOC B.1.351 was tested in a K18-hACE2 transgenic mouse model. Naive mice and mice immunized with a formalin-inactivated SARS-CoV-2 preparation were used as controls. mRNA-immunized mice develop elevated SARS-CoV-2 RBD-specific antibody and neutralization titers which are readily detectable, but significantly reduced against VOC B.1.351. The mRNA vaccines fully protect from disease and mortality caused by either viral strain. SARS-CoV-2 remains undetected in swabs, lung, or brain in these groups. Despite lower neutralizing antibody titers compared to the ancestral strain BavPat1, CVnCoV and CV2CoV show complete disease protection against the novel VOC B.1.351 in our studies.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , Cell Line , Chlorocebus aethiops , Genome, Viral/genetics , Humans , Mice , Mice, Transgenic , SARS-CoV-2/genetics , Vero Cells
12.
Emerg Infect Dis ; 27(7): 1974-1976, 2021 07.
Article in English | MEDLINE | ID: covidwho-1278359

ABSTRACT

We report a therapy cat in a nursing home in Germany infected with severe acute respiratory syndrome coronavirus 2 during a cluster outbreak in the home residents. Although we confirmed prolonged presence of virus RNA in the asymptomatic cat, genome sequencing showed no further role of the cat in human infections on site.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cats , Disease Outbreaks , Germany , Humans , RNA, Viral/genetics , Retirement
13.
Microbiome ; 9(1): 51, 2021 02 20.
Article in English | MEDLINE | ID: covidwho-1090608

ABSTRACT

BACKGROUND: The detection of pathogens in clinical and environmental samples using high-throughput sequencing (HTS) is often hampered by large amounts of background information, which is especially true for viruses with small genomes. Enormous sequencing depth can be necessary to compile sufficient information for identification of a certain pathogen. Generic HTS combining with in-solution capture enrichment can markedly increase the sensitivity for virus detection in complex diagnostic samples. METHODS: A virus panel based on the principle of biotinylated RNA baits was developed for specific capture enrichment of epizootic and zoonotic viruses (VirBaits). The VirBaits set was supplemented by a SARS-CoV-2 predesigned bait set for testing recent SARS-CoV-2-positive samples. Libraries generated from complex samples were sequenced via generic HTS (without enrichment) and afterwards enriched with the VirBaits set. For validation, an internal proficiency test for emerging epizootic and zoonotic viruses (African swine fever virus, Ebolavirus, Marburgvirus, Nipah henipavirus, Rift Valley fever virus) was conducted. RESULTS: The VirBaits set consists of 177,471 RNA baits (80-mer) based on about 18,800 complete viral genomes targeting 35 epizootic and zoonotic viruses. In all tested samples, viruses with both DNA and RNA genomes were clearly enriched ranging from about 10-fold to 10,000-fold for viruses including distantly related viruses with at least 72% overall identity to viruses represented in the bait set. Viruses showing a lower overall identity (38% and 46%) to them were not enriched but could nonetheless be detected based on capturing conserved genome regions. The internal proficiency test supports the improved virus detection using the combination of HTS plus targeted enrichment but also points to the risk of cross-contamination between samples. CONCLUSIONS: The VirBaits approach showed a high diagnostic performance, also for distantly related viruses. The bait set is modular and expandable according to the favored diagnostics, health sector, or research question. The risk of cross-contamination needs to be taken into consideration. The application of the RNA-baits principle turned out to be user friendly, and even non-experts can easily use the VirBaits workflow. The rapid extension of the established VirBaits set adapted to actual outbreak events is possible as shown for SARS-CoV-2. Video abstract.


Subject(s)
SARS-CoV-2/isolation & purification , Viruses/isolation & purification , Zoonoses/diagnosis , Animals , DNA, Viral/genetics , Genome, Viral , Humans , RNA, Viral/genetics , SARS-CoV-2/genetics , Viruses/classification
14.
Lancet Microbe ; 1(5): e218-e225, 2020 09.
Article in English | MEDLINE | ID: covidwho-1087372

ABSTRACT

BACKGROUND: In December, 2019, a novel zoonotic severe acute respiratory syndrome-related coronavirus emerged in China. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became pandemic within weeks and the number of human infections and severe cases is increasing. We aimed to investigate the susceptibilty of potential animal hosts and the risk of anthropozoonotic spill-over infections. METHODS: We intranasally inoculated nine fruit bats (Rousettus aegyptiacus), ferrets (Mustela putorius), pigs (Sus scrofa domesticus), and 17 chickens (Gallus gallus domesticus) with 105 TCID50 of a SARS-CoV-2 isolate per animal. Direct contact animals (n=3) were included 24 h after inoculation to test viral transmission. Animals were monitored for clinical signs and for virus shedding by nucleic acid extraction from nasal washes and rectal swabs (ferrets), oral swabs and pooled faeces samples (fruit bats), nasal and rectal swabs (pigs), or oropharyngeal and cloacal swabs (chickens) on days 2, 4, 8, 12, 16, and 21 after infection by quantitative RT-PCR (RT-qPCR). On days 4, 8, and 12, two inoculated animals (or three in the case of chickens) of each species were euthanised, and all remaining animals, including the contacts, were euthanised at day 21. All animals were subjected to autopsy and various tissues were collected for virus detection by RT-qPCR, histopathology immunohistochemistry, and in situ hybridisation. Presence of SARS-CoV-2 reactive antibodies was tested by indirect immunofluorescence assay and virus neutralisation test in samples collected before inoculation and at autopsy. FINDINGS: Pigs and chickens were not susceptible to SARS-CoV-2. All swabs, organ samples, and contact animals were negative for viral RNA, and none of the pigs or chickens seroconverted. Seven (78%) of nine fruit bats had a transient infection, with virus detectable by RT-qPCR, immunohistochemistry, and in situ hybridisation in the nasal cavity, associated with rhinitis. Viral RNA was also identified in the trachea, lung, and lung-associated lymphatic tissue in two animals euthanised at day 4. One of three contact bats became infected. More efficient virus replication but no clinical signs were observed in ferrets, with transmission to all three direct contact animals. Mild rhinitis was associated with viral antigen detection in the respiratory and olfactory epithelium. Prominent viral RNA loads of 0-104 viral genome copies per mL were detected in the upper respiratory tract of fruit bats and ferrets, and both species developed SARS-CoV-2-reactive antibodies reaching neutralising titres of up to 1/1024 after 21 days. INTERPRETATION: Pigs and chickens could not be infected intranasally by SARS-CoV-2, whereas fruit bats showed characteristics of a reservoir host. Virus replication in ferrets resembled a subclinical human infection with efficient spread. Ferrets might serve as a useful model for further studies-eg, testing vaccines or antivirals. FUNDING: German Federal Ministry of Food and Agriculture.


Subject(s)
COVID-19 , Chiroptera , Rhinitis , Animals , Antibodies, Viral , COVID-19/veterinary , Chickens/genetics , Chiroptera/genetics , Ferrets/genetics , RNA, Viral/genetics , SARS-CoV-2
15.
Emerg Infect Dis ; 26(12): 2982-2985, 2020 12.
Article in English | MEDLINE | ID: covidwho-890311

ABSTRACT

Raccoon dogs might have been intermediate hosts for severe acute respiratory syndrome-associated coronavirus in 2002-2004. We demonstrated susceptibility of raccoon dogs to severe acute respiratory syndrome coronavirus 2 infection and transmission to in-contact animals. Infected animals had no signs of illness. Virus replication and tissue lesions occurred in the nasal conchae.


Subject(s)
COVID-19/transmission , SARS-CoV-2/genetics , Animals , COVID-19/virology , Disease Models, Animal , Disease Susceptibility/virology , Pandemics , Raccoon Dogs/virology , Reverse Transcriptase Polymerase Chain Reaction , Viral Zoonoses , Virus Shedding
SELECTION OF CITATIONS
SEARCH DETAIL