Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Lancet Reg Health Eur ; 3: 100038, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1192394


BACKGROUND: Care homes have been disproportionately affected by the COVID-19 pandemic. We investigated the potential role of asymptomatic infection and silent transmission in London care homes that reported no cases of COVID-19 during the first wave of the pandemic. METHODS: Five care homes with no cases and two care homes reporting a single case of COVID-19 (non-outbreak homes) were investigated with nasal swabbing for SARS-CoV-2 RT-PCR and serology for SARS-CoV-2 antibodies five weeks later. Whole genome sequencing (WGS) was performed on RT-PCR positive samples. Serology results were compared with those of six care homes with recognised outbreaks. FINDINGS: Across seven non-outbreak homes, 718 (387 staff, 331 residents) individuals had a nasal swab and 651 (386 staff, 265 residents) had follow-up serology. Sixteen individuals (13 residents, 3 staff) in five care homes with no reported cases were RT-PCR positive (care home positivity rates, 0 to 7.6%) compared to 13 individuals (3.0 and 10.8% positivity) in two homes reporting a single case.Seropositivity across these seven homes varied between 10.7-56.5%, with four exceeding community seroprevalence in London (14.8%). Seropositivity rates for staff and residents correlated significantly (rs 0.84, [95% CI 0.51-0.95] p <0.001) across the 13 homes. WGS identified multiple introductions into some homes and silent transmission of a single lineage between staff and residents in one home. INTERPRETATION: We found high rates of asymptomatic infection and transmission even in care homes with no COVID-19 cases. The higher seropositivity rates compared to RT-PCR positivity highlights the true extent of the silent outbreak. FUNDING: PHE.

Age Ageing ; 50(3): 649-656, 2021 05 05.
Article in English | MEDLINE | ID: covidwho-1096485


INTRODUCTION: Previous investigations have identified high rates of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among residents and staff in care homes reporting an outbreak of coronavirus disease 2019 (COVID-19). We investigated care homes reporting a single suspected or confirmed case to assess whether early mass testing might reduce risk of transmission during the peak of the pandemic in London. METHODS: Between 18 and 27 April 2020, residents and staff in care homes reporting a single case of COVID-19 to Public Health England had a nasal swab to test for SARS-CoV-2 infection by reverse transcription polymerase chain reaction and subsequent whole-genome sequencing. Residents and staff in two care homes were re-tested 8 days later. RESULTS: Four care homes were investigated. SARS-CoV-2 positivity was 20% (65/333) overall, ranging between 3 and 59%. Among residents, positivity ranged between 3 and 76% compared with 3 and 40% in staff. Half of the SARS-CoV-2-positive residents (23/46, 50%) and 63% of staff (12/19) reported symptoms within 14 days before or after testing. Repeat testing 8 days later in two care homes with the highest infection rates identified only two new cases. Genomic analysis demonstrated a small number of introduction of the virus into care homes, and distinct clusters within three of the care homes. CONCLUSIONS: We found extensive but variable rates of SARS-CoV-2 infection among residents and staff in care homes reporting a single case of COVID-19. Although routine whole-home testing has now been adopted into practice, care homes must remain vigilant and should be encouraged to report a single suspected case, which should trigger appropriate outbreak control measures.

COVID-19/diagnosis , Mass Screening/statistics & numerical data , SARS-CoV-2/isolation & purification , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/transmission , COVID-19 Nucleic Acid Testing , COVID-19 Testing , England , Female , Humans , Infection Control , London/epidemiology , Long-Term Care , Male , Pandemics , Policy , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Whole Genome Sequencing
J Infect ; 81(4): 621-624, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-801950


BACKGROUND: Care homes have been disproportionately affected by the COVID-19 pandemic and continue to suffer large outbreaks even when community infection rates are declining, thus representing important pockets of transmission. We assessed occupational risk factors for SARS-CoV-2 infection among staff in six care homes experiencing a COVID-19 outbreak during the peak of the pandemic in London, England. METHODS: Care home staff were tested for SARS-COV-2 infection by RT-PCR and asked to report any symptoms, their contact with residents and if they worked in different care homes. Whole genome sequencing (WGS) was performed on RT-PCR positive samples. RESULTS: In total, 53 (21%) of 254 staff were SARS-CoV-2 positive but only 12/53 (23%) were symptomatic. Among staff working in a single care home, SARS-CoV-2 positivity was 15% (2/13), 16% (7/45) and 18% (30/169) in those reporting no, occasional and regular contact with residents. In contrast, staff working across different care homes (14/27, 52%) had a 3.0-fold (95% CI, 1.9-4.8; P<0.001) higher risk of SARS-CoV-2 positivity than staff working in single care homes (39/227, 17%). WGS identified SARS-CoV-2 clusters involving staff only, including some that included staff working across different care homes. CONCLUSIONS: SARS-CoV-2 positivity was significantly higher among staff working across different care homes than those who were working in the same care home. We found local clusters of SARS-CoV-2 infection between staff only, including those with minimal resident contact. Infection control should be extended for all contact, including those between staff, whilst on care home premises.

Coronavirus Infections/epidemiology , Homes for the Aged/statistics & numerical data , Medical Staff/statistics & numerical data , Nursing Homes/statistics & numerical data , Occupational Exposure/adverse effects , Pneumonia, Viral/epidemiology , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/transmission , England/epidemiology , Genome, Viral/genetics , Humans , Infection Control/methods , London/epidemiology , Pandemics , Pneumonia, Viral/transmission , SARS-CoV-2 , Whole Genome Sequencing