Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-486173

ABSTRACT

Large-scale populations in the world have been vaccinated with COVID-19 vaccines, however, breakthrough infections of SARS-CoV-2 are still growing rapidly due to the emergence of immune-evasive variants, especially Omicron. It is urgent to develop effective broad-spectrum vaccines to better control the pandemic of these variants. Here, we present a mosaic-type trimeric form of spike receptor-binding domain (mos-tri-RBD) as a broad-spectrum vaccine candidate, which carries the key mutations from Omicron and other circulating variants. Tests in rats showed that the designed mos-tri-RBD, whether used alone or as a booster shot, elicited potent cross-neutralizing antibodies against not only Omicron but also other immune-evasive variants. Neutralizing antibody titers induced by mos-tri-RBD were substantially higher than those elicited by homo-tri-RBD (containing homologous RBDs from prototype strain) or the inactivated vaccine BBIBP-CorV. Our study indicates that mos-tri-RBD is highly immunogenic, which may serve as a broad-spectrum vaccine candidate in combating SARS-CoV-2 variants including Omicron.

2.
J Virol ; 96(3): e0192821, 2022 02 09.
Article in English | MEDLINE | ID: covidwho-1691422

ABSTRACT

From 2014 to week 07/2020 the Centre for Health Protection in Hong Kong conducted screening for influenza C virus (ICV). A retrospective analysis of ICV detections to week 26/2019 revealed persistent low-level circulation with outbreaks occurring biennially in the winters of 2015 to 2016 and 2017 to 2018 (R. S. Daniels et al., J Virol 94:e01051-20, 2020, https://doi.org/10.1128/JVI.01051-20). Here, we report on an outbreak occurring in 2019 to 2020, reinforcing the observation of biennial seasonality in Hong Kong. All three outbreaks occurred in similar time frames, were subsequently dwarfed by seasonal epidemics of influenza types A and B, and were caused by similar proportions of C/Kanagawa/1/76 (K)-lineage and C/São Paulo/378/82 S1- and S2-sublineage viruses. Ongoing genetic drift was observed in all genes, with some evidence of amino acid substitution in the hemagglutinin-esterase-fusion (HEF) glycoprotein possibly associated with antigenic drift. A total of 61 ICV genomes covering the three outbreaks were analyzed for reassortment, and 9 different reassortant constellations were identified, 1 K-lineage, 4 S1-sublineage, and 4 S2-sublineage, with 6 of these being identified first in the 2019-1920 outbreak (2 S2-lineage and 4 S1-lineage). The roles that virus interference/enhancement, ICV persistent infection, genome evolution, and reassortment might play in the observed seasonality of ICV in Hong Kong are discussed. IMPORTANCE Influenza C virus (ICV) infection of humans is common, with the great majority of people being infected during childhood, though reinfection can occur throughout life. While infection normally results in "cold-like" symptoms, severe disease cases have been reported in recent years. However, knowledge of ICV is limited due to poor systematic surveillance and an inability to propagate the virus in large amounts in the laboratory. Following recent systematic surveillance in Hong Kong SAR, China, and direct ICV gene sequencing from clinical specimens, a 2-year cycle of disease outbreaks (epidemics) has been identified, with gene mixing playing a significant role in ICV evolution. Studies like those reported here are key to developing an understanding of the impact of influenza C virus infection in humans, notably where comorbidities exist and severe respiratory disease can develop.


Subject(s)
Disease Outbreaks , Influenza, Human/epidemiology , Influenza, Human/virology , Influenzavirus C/classification , Influenzavirus C/genetics , Reassortant Viruses , Hemagglutinins, Viral/chemistry , Hemagglutinins, Viral/genetics , Hong Kong/epidemiology , Humans , Models, Molecular , Mutation , Phylogeny , Public Health Surveillance , Sequence Analysis, DNA , Structure-Activity Relationship , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/genetics
3.
Influenza Other Respir Viruses ; 15(6): 707-710, 2021 11.
Article in English | MEDLINE | ID: covidwho-1341261

ABSTRACT

We describe a Sanger sequencing protocol for SARS-CoV-2 S-gene the Spike (S)-glycoprotein product of which, composed of receptor-binding (S1) and membrane fusion (S2) segments, is the target of vaccines used to combat COVID-19. The protocol can be used in laboratories with basic Sanger sequencing capabilities and allows rapid "at source" screening for SARS-CoV-2 variants, notably those of concern. The protocol has been applied for surveillance, with clinical specimens collected in either nucleic acid preservation lysis-mix or virus transport medium, and research involving cultured viruses, and can yield data of public health importance in a timely manner.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Sequence Analysis , Spike Glycoprotein, Coronavirus/genetics
4.
Preprint in English | bioRxiv | ID: ppbiorxiv-448958

ABSTRACT

The spike (S) protein receptor-binding domain (RBD) of SARS-CoV-2 is an attractive target for COVID-19 vaccine developments, which naturally exists in a trimeric form. Here, guided by structural and computational analyses, we present a mutation-integrated trimeric form of RBD (mutI tri-RBD) as a broadly protective vaccine candidate, in which three RBDs were individually grafted from three different circulating SARS-CoV-2 strains including the prototype, Beta (B.1.351) and Kappa (B.1.617). The three RBDs were then connected end-to-end and co-assembled to possibly mimic the native trimeric arrangements in the natural S protein trimer. The recombinant expression of the mutI tri-RBD, as well as the homo-tri-RBD where the three RBDs were all truncated from the prototype strain, by mammalian cell exhibited correct folding, strong bio-activities, and high stability. The immunization of both the mutI tri-RBD and homo-tri-RBD plus aluminum adjuvant induced high levels of specific IgG and neutralizing antibodies against the SARS-CoV-2 prototype strain in mice. Notably, regarding to the "immune-escape" Beta (B.1.351) variant, mutI tri-RBD elicited significantly higher neutralizing antibody titers than homo-tri-RBD. Furthermore, due to harboring the immune-resistant mutations as well as the evolutionarily convergent hotspots, the designed mutI tri-RBD also induced strong broadly neutralizing activities against various SARS-CoV-2 variants, especially the variants partially resistant to homo-tri-RBD. Homo-tri-RBD has been approved by the China National Medical Products Administration to enter clinical trial (No. NCT04869592), and the superior broad neutralization performances against SARS-CoV-2 support the mutI tri-RBD as a more promising vaccine candidate for further clinical developments.

5.
J. Travel Res. ; 2020.
Article in English | WHO COVID, ELSEVIER | ID: covidwho-613896

ABSTRACT

This essay serves as a response to Cai and McKenna’s Letter to the Editor (2020) recently published in the Journal of Travel Research, which sought to initiate a discussion regarding the nature and future of research related to information technology and tourism (ITT). The authors argued that ITT is a subfield of information systems (IS) and ITT research is narrowly defined, self-referential, and focused on application, rather than building theory. In this essay, we challenge the authors’ basic assumptions as well as their supportive evidence. We argue that ITT, as an intersection between IT and tourism, is a well-developed, multidisciplinary field and has contributed substantially to tourism research and beyond. Furthermore, we offer a vision of future ITT research that aims to engage with much wider conversations about innovation, sustainability, well-being, quality of life, smart governance, and resilience, particularly in response to the unprecedented crisis caused by the COVID-19 pandemic.

6.
Inf. Technol. Tour. ; 2(22): 187-203, 20200601.
Article in English | WHO COVID, ELSEVIER | ID: covidwho-437484

ABSTRACT

This viewpoint article argues that the impacts of the novel coronavirus COVID-19 call for transformative e-Tourism research. We are at a crossroads where one road takes us to e-Tourism as it was before the crisis, whereas the other holds the potential to transform e-Tourism. To realize this potential, e-Tourism research needs to challenge existing paradigms and critically evaluate its ontological and epistemological foundations. In light of the paramount importance to rethink contemporary science, growth, and technology paradigms, we present six pillars to guide scholars in their efforts to transform e-Tourism through their research, including historicity, reflexivity, equity, transparency, plurality, and creativity. We conclude the paper with a call to the e-Tourism research community to embrace transformative research.

SELECTION OF CITATIONS
SEARCH DETAIL