Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
CNS Neurosci Ther ; 27(10): 1127-1135, 2021 10.
Article in English | MEDLINE | ID: covidwho-1270830


AIMS: To determine if neurologic symptoms at admission can predict adverse outcomes in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: Electronic medical records of 1053 consecutively hospitalized patients with laboratory-confirmed infection of SARS-CoV-2 from one large medical center in the USA were retrospectively analyzed. Univariable and multivariable Cox regression analyses were performed with the calculation of areas under the curve (AUC) and concordance index (C-index). Patients were stratified into subgroups based on the presence of encephalopathy and its severity using survival statistics. In sensitivity analyses, patients with mild/moderate and severe encephalopathy (defined as coma) were separately considered. RESULTS: Of 1053 patients (mean age 52.4 years, 48.0% men [n = 505]), 35.1% (n = 370) had neurologic manifestations at admission, including 10.3% (n = 108) with encephalopathy. Encephalopathy was an independent predictor for death (hazard ratio [HR] 2.617, 95% confidence interval [CI] 1.481-4.625) in multivariable Cox regression. The addition of encephalopathy to multivariable models comprising other predictors for adverse outcomes increased AUCs (mortality: 0.84-0.86, ventilation/ intensive care unit [ICU]: 0.76-0.78) and C-index (mortality: 0.78 to 0.81, ventilation/ICU: 0.85-0.86). In sensitivity analyses, risk stratification survival curves for mortality and ventilation/ICU based on severe encephalopathy (n = 15) versus mild/moderate encephalopathy (n = 93) versus no encephalopathy (n = 945) at admission were discriminative (p < 0.001). CONCLUSIONS: Encephalopathy at admission predicts later progression to death in SARS-CoV-2 infection, which may have important implications for risk stratification in clinical practice.

Brain Diseases/diagnosis , Brain Diseases/mortality , COVID-19/diagnosis , COVID-19/mortality , Patient Admission/trends , Adult , Aged , Brain Diseases/therapy , COVID-19/therapy , Cohort Studies , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Retrospective Studies
Korean J Radiol ; 22(7): 1213-1224, 2021 07.
Article in English | MEDLINE | ID: covidwho-1143395


OBJECTIVE: To develop a machine learning (ML) pipeline based on radiomics to predict Coronavirus Disease 2019 (COVID-19) severity and the future deterioration to critical illness using CT and clinical variables. MATERIALS AND METHODS: Clinical data were collected from 981 patients from a multi-institutional international cohort with real-time polymerase chain reaction-confirmed COVID-19. Radiomics features were extracted from chest CT of the patients. The data of the cohort were randomly divided into training, validation, and test sets using a 7:1:2 ratio. A ML pipeline consisting of a model to predict severity and time-to-event model to predict progression to critical illness were trained on radiomics features and clinical variables. The receiver operating characteristic area under the curve (ROC-AUC), concordance index (C-index), and time-dependent ROC-AUC were calculated to determine model performance, which was compared with consensus CT severity scores obtained by visual interpretation by radiologists. RESULTS: Among 981 patients with confirmed COVID-19, 274 patients developed critical illness. Radiomics features and clinical variables resulted in the best performance for the prediction of disease severity with a highest test ROC-AUC of 0.76 compared with 0.70 (0.76 vs. 0.70, p = 0.023) for visual CT severity score and clinical variables. The progression prediction model achieved a test C-index of 0.868 when it was based on the combination of CT radiomics and clinical variables compared with 0.767 when based on CT radiomics features alone (p < 0.001), 0.847 when based on clinical variables alone (p = 0.110), and 0.860 when based on the combination of visual CT severity scores and clinical variables (p = 0.549). Furthermore, the model based on the combination of CT radiomics and clinical variables achieved time-dependent ROC-AUCs of 0.897, 0.933, and 0.927 for the prediction of progression risks at 3, 5 and 7 days, respectively. CONCLUSION: CT radiomics features combined with clinical variables were predictive of COVID-19 severity and progression to critical illness with fairly high accuracy.

COVID-19/diagnosis , Machine Learning , Severity of Illness Index , Tomography, X-Ray Computed/methods , Critical Illness , Humans , Male , Middle Aged , ROC Curve , Retrospective Studies , SARS-CoV-2/pathogenicity