Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Viruses ; 14(3)2022 03 13.
Article in English | MEDLINE | ID: covidwho-1742726

ABSTRACT

The prolonged duration of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic has resulted in the continuous emergence of variants of concern (VOC, e.g., Omicron) and variants of interest (VOI, e.g., Lambda). These variants have challenged the protective efficacy of current COVID-19 vaccines, thus calling for the development of novel therapeutics against SARS-CoV-2 and its VOCs. Here, we constructed a novel fusion inhibitor-based recombinant protein, denoted as 5-Helix, consisting of three heptad repeat 1 (HR1) and two heptad repeat 2 (HR2) fragments. The 5-Helix interacted with the HR2 domain of the viral S2 subunit, the most conserved region in spike (S) protein, to block homologous six-helix bundle (6-HB) formation between viral HR1 and HR2 domains and, hence, viral S-mediated cell-cell fusion. The 5-Helix potently inhibited infection by pseudotyped SARS-CoV-2 and its VOCs, including Delta and Omicron variants. The 5-Helix also inhibited infection by authentic SARS-CoV-2 wild-type (nCoV-SH01) strain and its Delta variant. Collectively, our findings suggest that 5-Helix can be further developed as either a therapeutic or prophylactic to treat and prevent infection by SARS-CoV-2 and its variants.


Subject(s)
COVID-19 , Viral Envelope Proteins , COVID-19 Vaccines , Humans , Membrane Glycoproteins/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins/metabolism
2.
Cell Res ; 32(3): 269-287, 2022 03.
Article in English | MEDLINE | ID: covidwho-1634806

ABSTRACT

The emergence of SARS-CoV-2 variants and potentially other highly pathogenic sarbecoviruses in the future highlights the need for pan-sarbecovirus vaccines. Here, we discovered a new STING agonist, CF501, and found that CF501-adjuvanted RBD-Fc vaccine (CF501/RBD-Fc) elicited significantly stronger neutralizing antibody (nAb) and T cell responses than Alum- and cGAMP-adjuvanted RBD-Fc in mice. Vaccination of rabbits and rhesus macaques (nonhuman primates, NHPs) with CF501/RBD-Fc elicited exceptionally potent nAb responses against SARS-CoV-2 and its nine variants and 41 S-mutants, SARS-CoV and bat SARSr-CoVs. CF501/RBD-Fc-immunized hACE2-transgenic mice were almost completely protected against SARS-CoV-2 challenge, even 6 months after the initial immunization. NHPs immunized with a single dose of CF501/RBD-Fc produced high titers of nAbs. The immunized macaques also exhibited durable humoral and cellular immune responses and showed remarkably reduced viral load in the upper and lower airways upon SARS-CoV-2 challenge even at 108 days post the final immunization. Thus, CF501/RBD-Fc can be further developed as a novel pan-sarbecovirus vaccine to combat current and future outbreaks of sarbecovirus diseases.


Subject(s)
COVID-19 , Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Macaca mulatta , Mice , Rabbits , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , T-Lymphocytes
3.
Acta Pharm Sin B ; 12(4): 1652-1661, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1336241

ABSTRACT

The development of broad-spectrum antivirals against human coronaviruses (HCoVs) is critical to combat the current coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants, as well as future outbreaks of emerging CoVs. We have previously identified a polyethylene glycol-conjugated (PEGylated) lipopeptide, EK1C4, with potent pan-CoV fusion inhibitory activity. However, PEG linkers in peptide or protein drugs may reduce stability or induce anti-PEG antibodies in vivo. Therefore, we herein report the design and synthesis of a series of dePEGylated lipopeptide-based pan-CoV fusion inhibitors featuring the replacement of the PEG linker with amino acids in the heptad repeat 2 C-terminal fragment (HR2-CF) of HCoV-OC43. Among these lipopeptides, EKL1C showed the most potent inhibitory activity against infection by SARS-CoV-2 and its spike (S) mutants, as well as other HCoVs and some bat SARS-related coronaviruses (SARSr-CoVs) tested. The dePEGylated lipopeptide EKL1C exhibited significantly stronger resistance to proteolytic enzymes, better metabolic stability in mouse serum, higher thermostability than the PEGylated lipopeptide EK1C4, suggesting that EKL1C could be further developed as a candidate prophylactic and therapeutic for COVID-19 and other coronavirus diseases.

SELECTION OF CITATIONS
SEARCH DETAIL