Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Energies ; 15(7):2395, 2022.
Article in English | MDPI | ID: covidwho-1762759

ABSTRACT

In the context of the economic situation, international relations, and the consequences of COVID-19, the future competition pattern of crude oil trade is uncertain. In this paper, the crude oil international import competition and export competition networks are based on a complex network model. The link prediction method is used to construct a crude oil competition relationship prediction model. We summarize the evolving characteristics of the competitive landscape of the global crude oil trade from 2000 to 2019 and explore the reasons for the changes. Finally, we forecast the future potential crude oil import and export competition. The results indicate the following. (1) The crude oil import competition center is transferred from Europe and America to the Asia–Pacific region and it may continue to shift to developing regions. (2) At present, the competition among traditional crude oil exporters is the core of crude oil export competition, such as OPEC, Canada, and Russia. The United States has become the world's largest crude oil exporter, which means that the core of crude oil export competition has begun to shift to emerging countries. The competition intensity of emerging crude oil exporters is gradually increasing. There is likely to be fierce export competition between traditional and emerging exporters. (3) In the future crude oil competition, we should pay attention to the trend of the United States, which may lead to the restructuring of the global oil trade pattern. Finally, this paper considers the exporters and importers and puts forward policy suggestions for policymakers to deal with the future global crude oil trade competition.

2.
Chemical & Pharmaceutical Bulletin ; 69(3):237-245, 2021.
Article in English | CAB Abstracts | ID: covidwho-1408633

ABSTRACT

As a background sampling site in western Japan, the Kanazawa University Wajima Air Monitoring Station (KUWAMS) continuously observes the air pollutants, including PM1, PM2.5, organic carbon (OC) and element carbon (EC). Data for September 2019 to April 2020 were compared with data for September 2018 to April 2019. The mean concentrations of both PM1 and PM2.5 were 4.10 micro g/m3 (47%) and 5.82 micro g/m3 (33%) lower, respectively in the Coronavirus Disease 2019 (COVID-19) period (January to April) than in the same period in 2019. Notably, the average concentrations of both classes of particulate matter (PM) in the COVID-19 period were the lowest for that period in all years since 2016. OC and EC also considerably lower (by 69 and 63%, respectively) during the COVID-19 period than during the same period in 2019. All pollutants were then started to increase after the resumption of the work in 2020. The pollutant variations correspond to the measure implemented during the COVID-19 period, including the nationwide lockdown and work resumption. Furthermore, the reductions in the ratios PM1/PM2.5 and OC/EC during COVID-19 period indicate lighter pollution and fewer emission sources. This analysis of the changes in the pollutant concentrations during the epidemic and non-epidemic periods illustrates the significance of the dominant pollution emissions at KUWAMS and the impact of pollution from China that undergoes long-range transport to KUWAMS.

3.
Clin Chem ; 67(4): 672-683, 2021 03 31.
Article in English | MEDLINE | ID: covidwho-1165392

ABSTRACT

BACKGROUND: Infectious disease outbreaks such as the COVID-19 (coronavirus disease 2019) pandemic call for rapid response and complete screening of the suspected community population to identify potential carriers of pathogens. Central laboratories rely on time-consuming sample collection methods that are rarely available in resource-limited settings. METHODS: We present a highly automated and fully integrated mobile laboratory for fast deployment in response to infectious disease outbreaks. The mobile laboratory was equipped with a 6-axis robot arm for automated oropharyngeal swab specimen collection; virus in the collected specimen was inactivated rapidly using an infrared heating module. Nucleic acid extraction and nested isothermal amplification were performed by a "sample in, answer out" laboratory-on-a-chip system, and the result was automatically reported by the onboard information platform. Each module was evaluated using pseudovirus or clinical samples. RESULTS: The mobile laboratory was stand-alone and self-sustaining and capable of on-site specimen collection, inactivation, analysis, and reporting. The automated sampling robot arm achieved sampling efficiency comparable to manual collection. The collected samples were inactivated in as short as 12 min with efficiency comparable to a water bath without damage to nucleic acid integrity. The limit of detection of the integrated microfluidic nucleic acid analyzer reached 150 copies/mL within 45 min. Clinical evaluation of the onboard microfluidic nucleic acid analyzer demonstrated good consistency with reverse transcription quantitative PCR with a κ coefficient of 0.979. CONCLUSIONS: The mobile laboratory provides a promising solution for fast deployment of medical diagnostic resources at critical junctions of infectious disease outbreaks and facilitates local containment of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) transmission.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Laboratories , Mobile Health Units , Pathology, Molecular/methods , RNA, Viral/analysis , Adult , Automobiles , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing/instrumentation , Female , Humans , Lab-On-A-Chip Devices , Male , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Middle East Respiratory Syndrome Coronavirus/chemistry , Molecular Diagnostic Techniques/instrumentation , Molecular Diagnostic Techniques/methods , Pandemics , Pathology, Molecular/instrumentation , Robotics , SARS-CoV-2/chemistry
4.
Engineering (Beijing) ; 6(10): 1130-1140, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-743961

ABSTRACT

Fast and accurate diagnosis and the immediate isolation of patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are regarded as the most effective measures to restrain the coronavirus disease 2019 (COVID-19) pandemic. Here, we present a high-throughput, multi-index nucleic acid isothermal amplification analyzer (RTisochip™-W) employing a centrifugal microfluidic chip to detect 19 common respiratory viruses, including SARS-CoV-2, from 16 samples in a single run within 90 min. The limits of detection of all the viruses analyzed by the RTisochip™-W system were equal to or less than 50 copies·µL-1, which is comparable to those of conventional reverse transcription polymerase chain reaction. We also demonstrate that the RTisochip™-W system possesses the advantages of good repeatability, strong robustness, and high specificity. Finally, we analyzed 201 cases of preclinical samples, 14 cases of COVID-19-positive samples, 25 cases of clinically diagnosed samples, and 614 cases of clinical samples from patients or suspected patients with respiratory tract infections using the RTisochip™-W system. The test results matched the referenced results well and reflected the epidemic characteristics of the respiratory infectious diseases. The coincidence rate of the RTisochip™-W with the referenced kits was 98.15% for the detection of SARS-CoV-2. Based on these extensive trials, we believe that the RTisochip™-W system provides a powerful platform for fighting the COVID-19 pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL